Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>ii</td>
</tr>
<tr>
<td>Acronyms</td>
<td>xiv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xvi</td>
</tr>
<tr>
<td>List of Research Papers</td>
<td>xxi</td>
</tr>
</tbody>
</table>

1. **An Introduction to Fully and Partially Accelerated Life Testing Models**
 1.1 Introduction | 1 |
 1.2 Types of Stress Loadings | 2 |
 1.2.1 Constant-Stress Loading | 3 |
 1.2.2 Step-Stress Loading | 3 |
 1.2.3 Progressive-Stress Loading | 3 |
 1.2.4 Cyclic-Stress Loading | 3 |
 1.2.5 Random-Stress Loading | 4 |
 1.2.6 Combined Stress Loading | 4 |
 1.3 Types of Stresses | 8 |
 1.3.1 Mechanical Stresses | 8 |
 1.3.2 Electrical Stresses | 8 |
 1.3.3 Environmental Stresses | 9 |
 1.3.4 Usage Rate Acceleration | 9 |
 1.4 A Product’s Life Distribution | 10 |
 1.4.1 Basic Concepts | |
 1.4.2 Some Life Distribution Models of Relevance under Accelerated Conditions | |
 1.4.2.1 Exponential Distribution | 11 |

T
1.4.2.2 Normal Distribution 12
1.4.2.3 Lognormal Distribution 13
1.4.2.4 Weibull Distribution 14
1.4.2.5 Extreme Value Distribution 15
1.4.2.6 Logistic Distribution 15
1.4.2.7 Log-Logistic Distribution 16
1.4.2.8 Truncated Logistic Distribution 17
1.4.2.9 Burr Type-XII Distribution 19

1.5 Fully Accelerated Life Test (ALT) Model 20
1.5.1 Stress-Life Relationship 21
 1.5.1.1 Arrhenius Relationship 21
 1.5.1.2 Inverse Power Law Relationship 22
 1.5.1.3 Eyring Relationship 23
 1.5.1.4 Temperature-Humidity Relationship 24
 1.5.1.5 Temperature-Non Thermal Relationship 24
 1.5.1.6 Multivariable Relationship 24
1.5.2 Constant-Stress ALT Models 25
1.5.3 ALT Models under Varying Stress 26
 1.5.3.1 Step-Stress ALT Model 27
 1.5.3.2 Progressive-Stress ALT Model 31

1.6 Partially Accelerated Life Test (PALT) Model 33
1.6.1 Constant-Stress PALT Models 34
1.6.2 Step-Stress PALT Models 34

1.7 Data Analysis 35
 1.7.1 Type-I Censoring 36
 1.7.2 Type-II Censoring 36

1.8 Optimum Test Plan 37
 1.8.1 Variance Optimality 38
 1.8.2 D-Optimality 39
1.8.3 A-Optimality 40
1.9 Sensitivity Analysis 40
1.10 Review Work 40
1.10.1 Constant-Stress ALT Models 41
1.10.2 Step-Stress ALT Models 43
1.10.3 Progressive-Stress ALT Models 47
1.10.4 Modified-Stress ALT Models 48
1.10.5 Constant-Stress PALT Models 49
1.10.6 Step-Stress PALT Models 50
1.11 Preview of the Thesis 53

2. Optimum Multi-Objective Ramp-Stress Fully Accelerated Life Test Plans for the Burr Type-XII Distribution under Type-I Censoring 56-90
2.1 Introduction 56
2.1.1 Burr Type-XII Lifetime Distribution 61
2.2 Optimum Multi-Level Ramp-Stress ALT Plan without Stress Upper Bound 61
2.2.1 Test Procedure 63
2.2.2 Life Distribution under Multi-Level Ramp Test without Stress Upper Bound 63
2.2.3 Log-Likelihood Function 64
2.2.4 Parameter Estimation 65
2.2.5 Fisher Information Matrix 66
2.2.6 Asymptotic Variance of the MLE of Logarithm of Quantile at Design Stress 67
2.3 Optimum Multi-Objective Ramp-Stress ALT Plan with Stress Upper Bound 68
2.3.1 Test Procedure 69
2.3.2 Life Distribution under Ramp-Stress with Stress Upper Bound 69
2.3.3 Log-Likelihood Function 70
2.3.4 Parameter Estimation 71
2.3.5 Fisher Information Matrix 71
2.3.6 Asymptotic Variance of the MLE of Logarithm of Quantile at Design Stress 72
2.4 Formulation of a Multi-Objective Optimization Problem 73
 2.4.1 Optimization Problem for Multi-Level Ramp-Stress ALT Plan without Stress Upper Bound 73
 2.4.2 Optimization Problem for Ramp-Stress ALT Plan with Stress Upper Bound 75
2.5 Confidence Interval 76
2.6 Numerical Examples 77
 2.6.1 Numerical Example: Multi-Level Ramp-Stress ALT Plan without Stress Upper Bound 77
 2.6.1.1 Optimal Plan 77
 2.6.1.2 Simulated Data 78
 2.6.1.3 MLEs of the Design Parameters 79
 2.6.1.4 Confidence Intervals 79
 2.6.2 Numerical Example: Ramp-Stress ALT Plan with Stress Upper Bound 79
 2.6.2.1 Optimal Plan 80
 2.6.2.2 Simulated Data 80
 2.6.2.3 MLEs of the Design Parameters 81
 2.6.2.4 Confidence Intervals 81
2.7 Sensitivity Analysis 82
2.8 Comparative Study 84
 2.8.1 Comparative Study: Multi-Level Ramp-Stress ALT
Plan without Stress Upper Bound

2.8.2 Comparative Study: Ramp-Stress ALT Plan with Stress Upper Bound

2.9 Conclusions

3. Optimum Multi-Objective Fully Accelerated Life Test Plans for the Burr Type-XII Life Distribution with Modified Stress Loading Methods under Type-I Censoring

3.1 Introduction
3.1.1 Burr Type-XII Lifetime Distribution

3.2 Optimum Multi-Objective Modified Step-Stress ALT Plan
3.2.1 Test Procedure
3.2.2 Life Distribution under Modified Step-Stress
3.2.3 Log-Likelihood Function
3.2.4 Parameter Estimation
3.2.5 Fisher Information Matrix
3.2.6 Asymptotic Variance of the MLE of Logarithm of Quantile at Design Stress

3.3 Optimum Multi-Objective Modified Constant-Stress ALT Plan
3.3.1 Test Procedure
3.3.2 Life Distribution under Modified Constant-Stress
3.3.3 Log-Likelihood Function
3.3.4 Parameter Estimation
3.3.5 Fisher Information Matrix
3.3.6 Asymptotic Variance of the MLE of Logarithm of Quantile at Design Stress

3.4 Formulation of a Multi-Objective Optimization Problem
3.4.1 Multi-Objective Optimization Problem: Modified Step-Stress ALT Plan
3.4.2 Multi-Objective Optimization Problem: Modified Constant-Stress ALT Plan 113
3.5 Confidence Interval 115
3.6 Illustrative Examples 116
 3.6.1 Numerical Example: Modified Step-Stress ALT Plan 116
 3.6.1.1 Optimal Plan 116
 3.6.1.2 Simulated Data 118
 3.6.1.3 MLEs of the Design Parameters 118
 3.6.1.4 Confidence Intervals 119
 3.6.2 Numerical Example: Modified Constant-Stress ALT Plan 119
 3.6.2.1 Optimal Plan 119
 3.6.2.2 Simulated Data 122
 3.6.2.3 MLEs of the Design Parameters 122
 3.6.2.4 Confidence Intervals 123
3.7 Sensitivity Analysis 123
3.8 Comparative Study 125
 3.8.1 Comparative Study: Modified Step-Stress ALT Plan 126
 3.8.2 Comparative Study: Modified Constant-Stress ALT Plan 128
3.9 Concluding Remarks 131

4. Optimum Constant-Stress Partially Accelerated Life Test Plans for the Truncated Logistic Distribution with Type-I and Type-II Censoring 133-160
4.1 Introduction 133
 4.1.1 Truncated Logistic Distribution 137
4.2 Optimum Time-Censored Constant-Stress PALT 139
 4.2.1 Test Procedure 140
5. **Optimum Step-Stress Partially Accelerated Life Test Plans for the Truncated Logistic Distribution with Type-I and Type-II Censoring**

5.1 Introduction

5.1.1 Truncated Logistic Distribution

5.2 Optimum Time-Censored Step-Stress PALT Model

5.2.1 Test Procedure

5.2.2 Log-Likelihood Function

5.2.3 Parameter Estimation

5.2.4 Fisher Information Matrix

5.2.5 Optimal Test Plan

5.3 Optimum Failure-Censored Step-Stress PALT Model

5.3.1 For Type-II Censoring (Case I: Number of Failures Pre-Specified)

5.3.1.1 Test Procedure

5.3.1.2 Log-Likelihood Function

5.3.1.3 Parameter Estimation

5.3.1.4 Fisher Information Matrix

5.3.1.5 Optimal Test Plan

5.3.2 For Type-II Censoring (Case II: Proportion of Units Failing Before Censoring Pre-Specified)

5.3.2.1 Test Procedure

5.3.2.2 Log-Likelihood Function

5.3.2.3 Parameter Estimation

5.3.2.4 Fisher Information Matrix

5.3.2.5 Optimal Test Plan

5.4 Confidence Interval
5.5 Illustrative Examples

5.5.1 Numerical Example: Type-I Censoring
 5.5.1.1 Optimal Plan
 5.5.1.2 Simulated Data
 5.5.1.3 MLEs of the Design Parameters
 5.5.1.4 Confidence Intervals
 5.5.1.5 Graphical Goodness of Fit
 5.5.1.6 Coverage Probabilities

5.5.2 Numerical Example: Type-II Censoring (Case I: Number of Failures Pre-Specified)
 5.5.2.1 Optimal Plan
 5.5.2.2 Simulated Data
 5.5.2.3 MLEs of the Design Parameters
 5.5.2.4 Confidence Intervals
 5.5.2.5 Graphical Goodness of Fit
 5.5.2.6 Coverage Probabilities

5.5.3 Numerical Example: Type-II Censoring (Case II: Degree of Censoring Pre-Specified)
 5.5.3.1 Optimal Plan
 5.5.3.2 Simulated Data
 5.5.3.3 MLEs of the Design Parameters
 5.5.3.4 Confidence Intervals

5.6 Sensitivity Analysis
 5.6.1 Sensitivity Analysis: Type-I censoring and Type-II Censoring (Case I: Number of Failures Pre-Specified)
 5.6.2 Sensitivity Analysis: Type-II Censoring (Case II: Proportion of Items Failing Before Failure Pre-Specified)

5.7 Comparative Study for Type-II Censoring (Case II: Proportion