REFERENCES
REFERENCES

Bilgrami, S. A., (1969). Further data on the chemical

Sons, pp.419-424.

Dhoundiyal, D.P., Paul, D.K., Sarkar, A., Trivedi, J.R.,

Evans, B.W., and Wright, T.L., (1972). Composition of liquidus chromite from the 1959 (Kilauea Iki) and

J. Petrol., V.23, pp.127-162.

the chemical classification of the common volcanic

minerals in the layered series of the Muskox
intrusion, In Wilson, H.D.B.,(Ed.), Magmatic Ore
Deposits, Econ. Geol. Mon., V.4, pp.76-94.

Jackson, E. D., (1961). Primary textures and mineral
associations in the Ultramafic Zone of the Still-
water complex, Montana. U.S. Geol. Surv. Prof.
Paper, V.358, pp.1-106.

Jackson, E.D., (1966). Liquid immiscibility in
chromitite seam formation - a discussion. Econ.
Geol., V.61, pp.777-780.

Jackson, E. D., (1967). Ultramafic cumulates in the Still-
water, Great Dyke, and Bushveld intrusions. In: Wyl-
lie, P.J. (Ed.), Ultramafic and Related Rocks, John
Wiley and Sons, New York, pp.20-38.

chromite and olivine in chromite zones of
Stillwater complex. In Wilson, H.D.B. (Ed.), Magmatic
Ore Deposits, pp.41-71.

Keith, M. L., (1954). Phase equilibria in the system
MgO-Cr$_2$O$_3$-SiO$_2$. J. Am. Ceram. Soc., V. 37, pp.490-496.

Le Maitre, R.W., (1976). The chemical variability of
some common igneous rocks. *J. Petrol.*, V.17, pp.589-637.

Pichamuthu, C.S., (1968). The Precambrian of India. In

Reynolds, I.M., (1985). The nature and origin of titaniferous magnetite-rich layers in the upper zone of the
Bushveld Complex: a review and synthesis. Econ. Geol., V.80, pp.1089-1108.

Petrol., V.20, pp.37-70.

176

Thompson, R. N., (1982). Magmatism of the British

Vishwanathan, S., (1974). Basaltic komatiite occurrences in the Kolar Gold Field of India. *Geol. Mag.*, V.82,
Voll, G., (1960). New work on petrofabrics: **Liverpool and Manchester Geol. Jour., V.2, pp.503-567.**

ADDENDUM

PLATE I

Photo 1: Bondla mafic-ultramafic complex seen from Tisk-Usgaon Road, (looking east).

Photo 2: Silicification and brecciation seen between Tisk and Usgaon, to the east of the road.
Photo 1: Pinching and swelling quartz veins in the zone of mylonite seen between Tisk and Usgaon, 0.5 km east of the road.

Photo 2: Thin chromite layers alternating with thick olivine-rich layers.
PLATE III

Photo 1 : Pulverised rocks from the zone of mylonite. (BxN)

Photo 2 : Sericite-and quartz-rich bands seen in mylonite. (BxN)
Plate 1: Olivine (serpentinitised) mesocumulate from dunite. (BXN)

Photo 2: Alternating chromite and olivine-rich layers in peridotite.
Photo 1: Preferred alignment of olivine (serpentinised) within the plane of layering of peridotite. (BxN)

Photo 2: Oikocrysts of Ca-poor pyroxene poikilitically enclosing rounded olivine and chromite. (BxN)
Photo 1: Vermicular silicates (pseudomorphs of serpentine after olivine) poikilitically enclosed by chromite in chromitite.

Photo 2: Mosaic of subhedral chromite with rounded silicates forming ring texture in chromitite.
Photo 1: Exsolutions of rutile in clinopyroxene from pyroxenite. (8XN)

Photo 2: Rutile exsolutions at an angle to the clinopyroxene cleavage.
PLATE VII

PHOTO 1

PHOTO 2
PLATE VIII

Photo 1: Orthocumulate texture of troctolite. Plagioclase exhibit uniform core and zoned borders. (BxN)

Photo 2: Mesocumulate texture in gabbro-norite. Plagioclase show marginal zoning due to post-cumulus growth. (BxN)
PLATE IX

Photo 1: Exsolutions of clinopyroxene in Ca-poor pyroxene. (BxN)

Photo 2: Exsolution belbs of pigeonite and fine exsolution lamallae of hypersthene in clinopyroxene. (BxN)
PLATE X

Photo 1: Reticulate texture exhibited by layered chromites.

Photo 2: Aggregates of chromite with cuniform interstices occupied by serpentinised olivine.
Photo 1: Pitted surface of chromite from chromitite.

Photo 2: Exsolutions of ilmenite in chromite.
PLATE XII

Photo 1: Fibrous chlorite replacing chromite perpendicular to the layer. (BxH)

Photo 2: Rounded islands of serpentinised olivine in a ring of chromite grains.
Photo 1: Megacrysts of euhedral pyrite showing compositional zoning.

Photo 2: Intergrowth of pyrite-II and pentlandite (pyrite-light grey, pentlandite darker grey).
Photo 1: Exsolutions of pentlandite (light grey) in pyrrhotite (medium grey).

Photo 2: Euhedral crystal of Co-gersdorffite (light grey) intergrown with pyrite (medium grey).