CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 1 Growth and development of the reliability inference</td>
<td>1-10</td>
</tr>
<tr>
<td>1.1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Classical inferential procedures in reliability theory</td>
<td>2</td>
</tr>
<tr>
<td>1.3. Bayesian inferential procedures in reliability theory</td>
<td>4</td>
</tr>
<tr>
<td>1.4. Inferential procedures for (P(X>Y))</td>
<td>5</td>
</tr>
<tr>
<td>1.5. Sequential inferential procedures in reliability theory</td>
<td>7</td>
</tr>
<tr>
<td>1.6. Road map of the thesis</td>
<td>8</td>
</tr>
<tr>
<td>CHAPTER 2 Uniformly minimum variance unbiased and maximum likelihood estimators in a family of lifetime distributions</td>
<td>11-38</td>
</tr>
<tr>
<td>2.1. Introduction</td>
<td>11</td>
</tr>
<tr>
<td>2.2. The family of lifetime distributions</td>
<td>12</td>
</tr>
<tr>
<td>2.3. UMVUES of Powers of (\alpha), (R(t)) and ‘P’</td>
<td>14</td>
</tr>
<tr>
<td>2.4. MLES of Powers of (\alpha), (R(t)) and ‘P’</td>
<td>25</td>
</tr>
<tr>
<td>2.5. MLES of (R(t)) and ‘P’ when all the parameters unknown</td>
<td>29</td>
</tr>
<tr>
<td>2.6. Simulation studies</td>
<td>32</td>
</tr>
<tr>
<td>CHAPTER 3 A family of lifetime distributions and related estimation and testing procedures for the reliability function under type I and type II censorings</td>
<td>39-65</td>
</tr>
<tr>
<td>3.1. Introduction</td>
<td>39</td>
</tr>
<tr>
<td>3.2. The family of lifetime distributions</td>
<td>39</td>
</tr>
<tr>
<td>3.3. UMVUES of (R(t)) and ‘P’ under type I and type II censorings</td>
<td>41</td>
</tr>
<tr>
<td>3.4. MLES of (R(t)) and ‘P’ under type I and type II censorings</td>
<td>53</td>
</tr>
<tr>
<td>3.5. Tests and confidence intervals</td>
<td>58</td>
</tr>
<tr>
<td>3.6. Simulation studies</td>
<td>61</td>
</tr>
<tr>
<td>CHAPTER 4 Bayesian estimation procedures for a family of lifetime distributions under squared-error and entropy losses</td>
<td>66-86</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>66</td>
</tr>
<tr>
<td>4.2 Preliminaries, notations and definitions</td>
<td>67</td>
</tr>
<tr>
<td>Title</td>
<td>Page No.</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.3 Bayes estimators of powers of α, $\rho(t)$ and ‘P’ under SELF</td>
<td>71</td>
</tr>
<tr>
<td>4.4 Bayes estimators of powers of α, $\rho(t)$ and ‘P’ under GELF</td>
<td>79</td>
</tr>
<tr>
<td>4.5 A numerical example</td>
<td>85</td>
</tr>
<tr>
<td>CHAPTER 5 Robustness of sequential testing procedures for a family of lifetime distributions</td>
<td>87-105</td>
</tr>
<tr>
<td>5.1. Introduction</td>
<td>87</td>
</tr>
<tr>
<td>5.2. Robustness of the SPRT for testing the hypothesis regarding γ when ρ is known</td>
<td>88</td>
</tr>
<tr>
<td>5.3. Robustness of the SPRT for testing the hypothesis for ρ when γ is known</td>
<td>92</td>
</tr>
<tr>
<td>5.4. SPRT for testing the composite hypothesis for ρ when γ is unknown</td>
<td>97</td>
</tr>
<tr>
<td>5.5. Numerical findings</td>
<td>102</td>
</tr>
<tr>
<td>CHAPTER 6 Robustness of the sequential testing procedures for the parameters of zero-truncated negative binomial, binomial and Poisson distributions</td>
<td>106-122</td>
</tr>
<tr>
<td>6.1. Introduction</td>
<td>106</td>
</tr>
<tr>
<td>6.2. SPRT for the parameter of zero-truncated negative binomial distribution</td>
<td>107</td>
</tr>
<tr>
<td>6.3. SPRT for the parameter of zero-truncated binomial distribution</td>
<td>111</td>
</tr>
<tr>
<td>6.4. SPRT for the parameter of zero-truncated Poisson distribution</td>
<td>113</td>
</tr>
<tr>
<td>6.5. The zero-truncated Poisson distribution as a limiting form of zero- truncated negative binomial and zero-truncated binomial distributions</td>
<td>115</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>123-138</td>
</tr>
</tbody>
</table>