Ninety four species of marine fungi belonging to sixty five genera (seventy two ascomycetes, two basidiomycetes and twenty deuteromycetes) were collected and identified from the mangrove ecosystems of the Indian sub-continent during the present study. This includes seventeen genera, twenty six species of new records to the Indian subcontinent and seven new taxa.

Information on the geographical distribution of marine fungi in mangrove ecosystems have been collected from vast area of Indian sub-continent for the first time especially from the oceanic islands such as the Lakshadweep Islands, the Maldives Islands, the Andaman Islands and the Nicobar Islands. These islands were earlier unexplored for marine fungi and all fungi recorded from these islands form the first record.

Extensive collections were made for the first time from *Kandelia candel* and almost all the fungi recorded form new host records. Large number of fungi were reported from *Avicennia marina*, *A. officinalis*, *Excoecaria agallocha*, *Rhizophora mucronata*, *R. apiculata* and *Sonneratia alba* for the first time from Indian mangroves. Most of the fungi occurring on the dead intertidal mangroves are not host specific. However, *Rhizophila marina* and *Capillataspora corticola* are specific to genus *Rhizophora*. High species diversity was found on *Rhizophora mucronata*. 
Studies on seasonal occurrence of higher marine fungi in Chorao Island, Goa, show that all the common fungi occur throughout the year which suggests that these fungi have wide tolerance to various environmental conditions in different seasons. The number of species and species diversity is more during monsoon and post-monsoon seasons compared to the pre-monsoon season.

On the dead and decaying intertidal submerged mangrove tree parts, rich species diversity of fungi was recorded above the mean tide level. Poor species diversity of fungi occur at the lowest low tide level. Ascocarp morphology is closely related to the vertical distribution of fungi on mangroves. Most of the fungi recorded during vertical distribution study show affinity to certain tidal level.

The species diversity of fungi is less in the initial and final stages of decomposition and more in the intermediate stage of decomposition. Species diversity is high in random collection technique compared to wood baiting technique. Different fungi colonize during different stages of decomposition. Stems and prop roots are more resistant to decomposition compared to seedlings and pneumatophores.

All fungi isolated from mangrove wood are able to grow in either media prepared from distilled water or from pure seawater. However, most of the fungi grow better in
diluted seawater medium. This suggests that these fungi are well adapted to the estuarine environment.

Marine fungi occurring in mangrove and non-mangrove areas can colonize as well as degrade treated and untreated plywoods and timbers. All the timbers both indigenous as well as imported are susceptible to marine fungal attack.