Table of Contents

1. INTRODUCTION 1-2

2. REVIEW OF LITERATURE 3-48
 2.1. Medicinal Plants 3
 2.2. Turmeric 4
 2.2.1. Synonyms 5
 2.2.2. Selected vernacular names 5
 2.2.3. Description 5
 2.2.4. General appearance 5
 2.2.5. Organoleptic properties 6
 2.2.6. Microscopic characteristics 6
 2.2.7. Geographical distribution 6
 2.2.8. Chemistry of volatile oil 7
 2.2.9. Analogues and derivatives 10
 2.3. Curcuminoids 11
 2.3.1. Classification & physicochemical properties of curcuminoids 12
 2.3.2. Chemical properties of curcuminoids 14
 2.3.3. Pharmacology of curcuminoids 15
 2.3.4. Isolation, chemistry and technological aspects 16
 2.3.5. Structure-activity relationship 19
 2.3.6. Analysis of curcuminoids 21
 2.3.7. Biological activities 25
 2.3.8. Mechanism of action 26
 2.3.9. Adverse reaction and toxicity 26
 2.3.10. Clinical uses and usual dose 27
 2.3.11. Analytical methods for determination of curcuminoids 27
 2.3.12. Pharmacokinetics studies 29
 2.3.13. Clinical studies 31
 2.4. Rheumatoid arthritis 34
 2.4.1. Pathology 34
 2.4.1.1 Joint pathology 34
 2.4.1.2 Non joint pathology 35
2.4.2. Symptoms
2.4.2.1. Joints
2.4.2.2. Non joint deformities
2.4.3. Diagnosis
2.4.3.1. Blood test
2.4.3.2. Synovial fluid
2.4.3.3. Imaging
2.4.3.4. Diagnostic criteria
2.4.4. Etiology and mechanisms
2.4.4.1. Environmental factors
2.4.4.2. Genetic factors
2.4.4.3. Dysregulation of immunity and inflammation
2.4.5. Treatment
2.4.5.1. Non-steroidal anti-inflammatory drugs (NSAIDs)
2.4.5.2. Gluco-corticosteroids
2.4.5.3. Disease-modifying anti-rheumatic drugs (DMARDs)
2.4.5.4. Biological therapy

2.5. Parkinson’s Disease
2.5.1. Introduction and clinical characteristics
2.5.2. Causative factors in Parkinson’s disease
2.5.2.1. Mitochondrial dysfunction
2.5.2.2. Genetic Component
2.5.2.3. Oxidative Stress
2.5.3. Neuro inflammation in Parkinson’s disease
2.5.4. Therapeutic approaches to Parkinson’s disease
2.5.4.1. Enhancing dopaminergic transmission: levodopa
2.5.4.2. The role of NSAID’s in Parkinson’s disease
2.5.4.3. Mechanisms of neuro protection via antioxidant enzymes

2.6. Cancer
2.6.1. The MCF-7 breast cancer cell line
2.6.2. Need for plant derived molecules

3. AIM AND OBJECTIVES
4. MATERIALS AND METHODS
4.1. Materials

- 4.1.1. Chemicals and Reagents
- 4.1.2. Drugs
- 4.1.3. Cell lines and cell culture
- 4.1.4. ELISA and enzymatic kits
- 4.1.5. Equipment’s

4.2. Methods

- 4.2.1. Isolation, identification & standardization of curcuminoids
 - 4.2.1.1. Collection and authentication of crude drug
 - 4.2.1.2. Standardization of crude drug
 - 4.2.1.3. Ash values
 - 4.2.1.4. Extractive values
 - 4.2.1.5. Determination of foreign matter
 - 4.2.1.6. Comparative chemical analysis
 - 4.2.1.7. Qualitative chemical tests of extracts
- 4.2.2. Extraction and Isolation of Individual Curcuminoids
 - 4.2.2.1. High Performance Thin-Layer Chromatography (HPTLC)
 - 4.2.2.2. High performance liquid chromatography (HPLC)
 - 4.2.2.3. Fourier transform infrared spectroscopy (FT-IR)
 - 4.2.2.4. Nuclear magnetic resonance spectroscopy (NMR)
- 4.2.3.1.5. MASS spectroscopy
- 4.2.3 In vivo studies
 - 4.2.3.1 Anti-arthritic potential of Curcuminoids
 - 4.2.3.1.1. Animals
 - 4.2.3.1.2. Induction and evaluation of arthritis
 - 4.2.3.1.3. Biochemical assays
 - 4.2.3.1.4. Measurement of related cytokine concentrations in serum
 - Tumor necrosis factor alpha (TNF-α) estimation
 - Interleukin-1β (IL-1β)
 - Interleukin-6 (IL-6) estimation
 - Interleukin-10 (IL-10) estimation
 - 4.2.3.1.5. Real time RT-PCR
 - 4.2.3.1.6. Radiographic and Histopathology analysis
4.2.3.2. Neuroprotective potential of Curcuminoids

4.2.3.2.1. Animals

4.2.3.2.2. Induction of Brain Lesions by Injection of 6-OHDA

4.2.3.2.3. Behavioral Studies

 Apomorphine-Induced Rotational Behavior Study
 Rota Rod Study
 Spontaneous Locomotor Study

4.2.3.2.4. Neurochemicals Study

4.2.3.2.5. Enzyme Estimations

 Malondialdehyde
 Glutathione Estimation
 Glutathione Peroxidase
 Glutathione Reductase
 Superoxide dismutase
 Catalase

4.2.3.2.6. Dopamine, DOPAC and HVA Estimation

4.2.3.2.7. Immunohistochemical Studies and Tyrosine Hydroxylase

4.2.4. In vitro studies

 Preparation of cell culture medium
 Maintenance of cell culture
 Sub cultivation of cells

4.2.4.1. Cell proliferation assay

 Principle
 Procedure
 Calculating the cell death

4.2.5. Statistical analysis

RESULTS

5. Isolation, identification & standardization of curcuminoids

5.1. Collection and authentication of crude drugs

5.1.1. Proximate analysis

5.2. Extraction and Isolation of Individual Curcuminoids

5.2.1. High Performance Thin-Layer Chromatography (HPTLC)

5.2.2. High performance liquid chromatography (HPLC)
5.2.3. Fourier transform infrared spectroscopy (FT-IR) 84
5.2.4. Nuclear magnetic resonance spectroscopy (NMR) 84
5.2.5. MASS spectroscopy 86

In Vivo studies 87

5.3. Anti-arthritic potential of Curcuminoids 87

5.3.1. Effect on Paw edema and body weight changes 87

5.3.2. Haematological parameters 89

5.3.3. Effect on total protein, albumin, globulin, fibrinogen & ceruloplasmin. 90

5.3.4. Effects on relative cytokines production 91

5.3.5. Effects of curcuminoids on relative cytokines mRNA expression 95

5.3.6. Effect of Curcuminoids on rat radiographic analysis 99

5.3.7. Effects of DMC on histopathology of synovium in AA rats 102

5.4. Neuroprotective potential of Curcuminoids 103

5.4.1. Behavioral parameters 104

5.4.2. Biochemical enzyme estimation 104

5.4.3. Dopamine, Dopamine and HVA estimation 105

5.4.4. Immunohistochemical staining 105

In Vitro studies 105

5.5. MCF-7 107

5.5.1. Inhibition of cell growth 107

DISCUSSION 108

6. 109-123

CONCLUSIONS 124-125

BIBLIOGRAPHY 126-166

Appendices