CONTENTS

I. **Surface Acoustic Wave and UV Photo-detector**
 1.1 Introduction
 1.2 Surface Acoustic Wave (SAW) based Sensors
 1.3 UV Photodetector Material
 1.4 SAW based Ultraviolet Photo-detector
 1.5 Multifunctional Properties of ZnO
 1.6 Magnetoelectric Effects
 1.7 Magnetoelectric Effect in Composite Materials
 1.7.1 Bulk Laminated Composites
 1.8 Applications of Magnetoelectric Materials
 1.8.1 Low Frequency Weak Field Magnetic Sensors

II. **Statement of the Problem and Thesis Objectives**
 2.1 Interest in Zinc Oxide
 2.2 Structure of Zinc Oxide (ZnO)
 2.3 Zinc Oxide Films for UV Photo-detectors: A Review
 2.4 Zinc Oxide Films for UV-SAW Sensors: A Review
 2.5 Objective and Aim of the Thesis
 2.6 Outline of the Present Work

III. **Experimental Techniques**
 3.1 Introduction
 3.2 Thin Film Technology and Deposition Techniques
 3.2.1 Sputtering
 3.2.1.1 Rf Sputtering
 3.2.1.2 Magnetron Sputtering
 3.2.2 Thermal Evaporation
 3.3 Thin Film Characterization Technique
 3.3.1 X-Ray Diffraction
 3.3.2 UV-visible Spectrometer
 3.3.3 Thickness Profiler
 3.4 Dielectric Measurements
 3.5 Vibrating Sample Magnetometry
 3.6 Conclusions

IV. **ZnO Metal Semiconductor Metal Photodetector**
 4.1 Introduction
 4.1.1 Ultraviolet Photodetectors
4.1.2 Types of Ultra Violet Detectors
4.1.3 Semiconductor Photodetector Mechanism and Glossary
4.1.4 Wide Band Gap Semiconductor Ultra Violet Detectors
4.1.5 ZnO as Photodetector
4.1.6 Advantage of MSM Photodetector

4.2 Growth and Characterization of Photoconducting ZnO
4.2.1 Deposition of ZnO Thin Films
4.2.2 Structural Properties of ZnO Thin Films

4.3 Ultraviolet Photoresponse Characteristics of ZnO Photodetectors
4.3.1 Experiment Setup
4.3.2 Dark Current
4.3.3 Photoresponse of ZnO Thin Films with Sputtering Pressure
4.3.4 Photoresponse of ZnO Thin Films with Oxygen Composition
4.3.5 Comparison of Device A and B
4.3.6 Effect of Incident Optical Power on the Photoresponse
4.3.7 Effect of Bias on the Photoresponse
4.3.8 Temporal Photoresponse Characteristics of ZnO MSM Photodetector
4.3.9 Frequency Characteristics of the Optimised ZnO MSM Photodetector
4.3.10 Wavelength Dependence on Photoresponse

4.4 Conclusions

V. Development of Surface Acoustic Wave (SAW) Sensors

5.1 Introduction
5.1.1 Surface Acoustic Wave Devices
5.1.2 Types of Surface Acoustic Wave(SAW) Devices
5.1.2.1 Delay Line Device
5.1.2.2 Resonators
5.1.3 SAW Device Characterization
5.1.4 Surface Acoustic Wave Sensors
5.1.4.1 Acoustoelectric Interaction Mechanism
5.1.5 Surface Acoustic Wave Ultra Violet Detector- A Review

5.2 Objectives of the Present Work

5.3 Development of Surface Acoustic Wave Oscillator
5.3.1 RF Circuit Design Guidelines
5.3.2 Types of SAW Oscillator Circuits
5.3.2.1 One Port SAW Resonator based Oscillator
5.3.2.2 Two-port SAW Resonator based Oscillator
5.3.2.3 Delay Line based Oscillator Circuits – Challenges
5.3.3 SAW Delay Line Oscillator Circuit Design
5.3.3.1 RF Amplifier Design
5.3.3.2 Impedance Matching
5.3.3.3 Bode Plot Analysis
5.3.3.4 Final Circuit Design and Oscillator Analysis

5.4 Effect of Acoustoelectric Interaction in SAW UV Sensors
5.4.1 Effect of ZnO Deposition on SAW Sensor Performance
5.4.2 UV Photoresponse Properties of ZnO Thin Film based SAW Sensors
5.4.2.1 SAW Resonators
5.4.2.2 SAW Delay line Based Oscillator
5.4.2.3 Frequency Hopping

5.5 Development of Hand-held SAW Sensor Prototype
5.5.1 Design Workflow
5.5.1.1 Differential Frequency and Mixer Design
5.5.1.2 Frequency Counter Design
5.5.1.3 Printed Circuit Board Design

5.6 Conclusions

VI. Magnetoelectric (ME) Effects with ZnO Films on Nickel and Metglas
6.1 Introduction
6.2 Thin Film Magnetoelectric (ME) Structures– A Review
6.3 Comparison of Magnetostriction and Piezoelectricity
6.4 Objectives of Work Presented in this Chapter
6.5 Magnetoelectric (ME) Measurements
6.6 Growth of ZnO Films on Ni & Metglas Foils
6.7 Magnetic Measurements
6.8 Dielectric Properties
6.9 Transverse ME Effects in ZnO/Ni and ZnO/Metglas
6.10 Comparison of Longitudinal and Transverse ME Effects
6.11 Frequency Response of MEVC
6.12 Conclusions

Scope for Future Work

References