CHAPTER - I

INTRODUCTION

1 - 28
CHAPTER - I
INTRODUCTION

PART - I SURJECTIVITY THEOREMS

1.1 In nonlinear analysis one of the classical methods is to define and generalize a degree of nonlinear maps and to find a fixed point or prove the surjectivity of those maps. The mapping \(f : X \rightarrow Y \) is said to be surjective, if every element in \(Y \) is the \(f \)-image of at least one element in \(X \). In this case, the range of \(f \) is equal to \(Y \), that is, \(f(X) = Y \).

In 1962, E. Bishop and R.R. Phelps \([6]\) used Zorn's lemma to prove that if \(C \) is a closed convex subset of a Banach space \(X \), then the support points of \(C \) are dense in the boundary of \(C \). Moreover, if \(C \) is a closed bounded convex set in a Banach space \(X \), then the collection of functionals that achieve their maximum on \(C \) is dense in \(X^* \). This could be obtained by partially ordering a complete subset of a normed linear space using a certain convex cone.

Phelps \([56]\) generalized the results proved in \([6]\) in a real Hausdorff topological vector

On the other hand, J. Caristi and W.A. Kirk provided a fixed point theorem [15, Theorem 2.1] which generalizes the Banach contraction principle.

1.2 SURJECTIVITY OF EXPANSIVE MAPS

In 1976, Browder [7] proved that if T is a locally expansive, continuous open map of E into F, then T is a homeomorphism onto F.
The following theorem is a generalized version of Browder's result presented by Kirk and Schöenberg [46].

THEOREM:

Let X and Y be complete metric spaces with Y metrically convex, and $T : X \to Y$ an open map having closed graph. Suppose also that T is locally expansive on X. Then $T(X) = Y$.

In this context, we proved in chapter II two generalized version of surjectivity theorems in Banach spaces by using closed graph condition over functions.

DEFINITION: 1

A metric space Y is said to be metrically convex if for all u,v in Y with $u \neq v$ there exists $w \in Y$, distinct from u and v, such that $d(u,v) = d(u,w) + d(w,v)$.

DEFINITION: 2

Let $P : D(P) \subset X \to Y$ be a nonlinear operator from a linear subspace $D(P)$ of X to a Banach space Y, is said to have closed graph if $x_n \to x$, $x_n \in D(P)$ and $Px_n \to Y$ imply $x \in D(P)$ and $y = Px$.

DEFINITION: 3

Let $c : (0, \infty) \to (0, \infty)$ be a continuous non increasing function such that $\int_0^\infty c(ks)ds = \infty$ whenever $k > 1$. A nonlinear map T from a subset B of a
Banach space X into a metric space Y is said to be locally c-expansive if each $x \in B$ has a neighbourhood N of x in B such that

$$c(||x||, ||h||) ||u-v|| \leq d(Tu, Tv)$$

for all $u, v \in N$, $o \neq h \in X$ and $||h|| \leq 1$.

We precisely proved the following:

THEOREM 1.

Let X be a Banach space and Y a complete metric space with metric convexity, and B open in X. Let $T: B \rightarrow Y$ have a closed graph. If T is locally c-expansive and open on B, then for $y \in Y$ the following are equivalent:

1. $y \in T(B)$.
2. There exists $x_0 \in B$ such that $d(Tx_0, y) = d(Tx, y)$ for all $x \in B$.

1.3 SURJECTIVITY OF WEIGHTED ϕ-ACCRETIVE OPERATORS

In 1984, J.A. Park and S. Park used the definitions of strongly ϕ-accretive maps as following:

Let X and Y be Banach spaces with Y^* the dual of Y, and let $\phi: X \rightarrow Y$ be a map satisfying:

1. $\phi(X)$ is dense in Y,
2. for each $x \in X$ and each $C \geq 0$,

$$||\phi(x)|| = ||x||$$

A map $P:X \rightarrow Y$ is said to be strongly...
\(\phi \)-accretive if there exists a constant \(c > 0 \) such that for all \(u, v \in X \),

\[
\langle Pu - Pn, \phi(u-v) \rangle \geq c||u-v||^2.
\]

The various types of generalized forms of locally \(\phi \)-accretive operators obtained by J.A. Park and S. Park [52] and further J.A. Park and S. Park [53] replaced the constant \(c \) in the definitions of (locally) strongly \(\phi \)-accretive maps by a certain functional value and also extended the known surjectivity results.

In chapter-III we established the following types of weighted forms of locally \(\phi \)-accretive operators.

RESULTS: Let \(c : (0, \infty) \rightarrow (0, \infty) \) be a continuous non-increasing function. The weighted (locally) \(\phi \)-accretive maps considered as following:

\[
\langle Pu - Pn, \phi(u-v) \rangle \geq c(||u-v|| ||h||^{-1}) ||u-v||^2.
\]

\[
\langle Pu - Px, \phi(u-x) \rangle \geq c(||u-x|| ||h||^{-1}) ||u-x||^2.
\]

\[
\langle Pu - Pn, \phi(u-v) \rangle \geq c(\max \{ ||u||, ||v|| \} ||h||^{-1}) ||u-v||^2.
\]
(1.3.7) For any $x \in X$, there exists an $\varepsilon > 0$ such that for any $u \in B(x; \varepsilon)$,
\[\langle Pu-Px, \phi (u-x) \rangle \geq c(||x||, ||h||^{-1}) ||u-x||^2. \]
Moreover we stated the following types of weighted (locally) ϕ-accretive maps:

(1.3.8) For each $y \in Y$ and $r > 0$ there exists a non-increasing function $c: [0, \infty) \to (0, \infty)$ such that if $||Px-y|| \leq r$ then for all $u, v \in X$ sufficiently near to x
\[\langle Pu-Pv, \phi (u-v) \rangle \geq c(||u-v||, ||h||^{-1}) ||u-v||^2. \]

(1.3.9) For each $y \in Y$ and $r > 0$ there exists a non-increasing function $c: [0, \infty) \to (0, \infty)$ such that if $||Px-y|| \leq r$ then for all $u \in X$ sufficiently near to x,
\[\langle Pu-Px, \phi (u-x) \rangle \geq c(||x||, ||h||^{-1}) ||u-x||^2. \]

From the above results it is obvious that
(1.3.4) \Rightarrow (1.3.5) \Rightarrow (1.3.8) \Rightarrow (1.3.9) and
(1.3.6) \Rightarrow (1.3.8) \Rightarrow (1.3.9).

We precisely proved the following surjectivity theorem:

THEOREM: 2

Let X and Y be Banach spaces and $P: X \to Y$ be a locally Lipschitzian map satisfying condition (1.3.9). If the duality map J of X is l.s.c and $P(X)$ is closed, then $P(X) = Y$.
1.4 SURJECTIVITY OF WEAK DIRECTIONAL CONTRACTOR

In chapter IV we have established the concept of weak-directional contractor as following:

Let \(P : D(P) \subseteq X \rightarrow Y \) be a nonlinear operator from a linear subspace \(D(P) \) of \(X \) to a Banach space \(Y \), and \(\overline{\langle x \rangle} : Y \rightarrow D(P) \) a bounded linear operator associated with \(x \in D(P) \). There exists a positive number \(q = q(P) < 1 \) such that for any \(x \in D(P) \) and \(y \in Y \), \(o \neq M \in X \) and there exists \(o < \in (x, y) \leq 1 \) satisfying

\[
(1.4.1) \quad ||P(x + \epsilon \overline{\langle x \rangle} y - Px - \epsilon y)|| ||M|| \leq q \epsilon ||y||
\]

where \(M = M(q) \) such that \(||M|| \leq 1 \).

Then \(\overline{x} \) is a weak-directional contractor for \(P \) at \(x \in D(P) \) and \(\overline{\langle \cdot \rangle} : D(P) \subseteq X \rightarrow L(Y, X) \) is called a directional contractor for \(P \), where \(L(Y, X) \) denotes the set of all linear continuous map of \(Y \) into \(X \). In particular, if there exists a constant \(B(>0) \) such that \(||\overline{\langle x \rangle}|| \leq B \) for all \(x \in D(P) \), then \(\overline{\langle \cdot \rangle} \) is called weak-directional contractor for \(P \).

In fact, we proved the following surjectivity theorem for some non-linear operators by using the concept of weak-directional contractor.
THEOREM: 3

A non-linear map \(P : D(P) \subset X \rightarrow Y \) which has closed graph and bounded weak directional contractor is surjective.

The results obtained by the above theorem have been applied to obtain the solution of certain functional equations.

DEFINITION: 1:

If there exists continuous increasing function \(B : (0, \infty) \rightarrow (0, \infty) \) such that

\[
\| \int \{x\} \| \leq B(\|x\|) \quad \text{for all } x \in D(P),
\]

then \(P \) is said to have a point wise bounded directional contractor \(r \).

Further, the algebraic property of nonlinear operators derived from the following:

THEOREM: 4

If a nonlinear operator \(P : X \rightarrow Y \) has a closed graph and a point wise bounded weak-directional contractor \(r \) with \(B(s) \), then \(P(B(o,k)) \) contains \(B(P(o), (1-q) \int_0^k B(s) \ ds) \) for any \(k > 0 \).

1.5. SURJECTIVITY OF A PAIR OF OPERATORS

A new method of proving surjectivity of an operator \(f \) in a Banach space was proposed by Bratislava [73]. For this the condition of coercivity of
\textbf{f} in the form
\[
\lim_{|x| \to \infty} |f(x)| = \infty
\]

was applied.

In this context, we have established in chapter-V the surjectivity of a pair of operators \(f\) and \(g\) in Euclidean space \(\mathbb{R}^n\) which generalizes the recent result of Bratislava \([73]\). The condition of coercivity for a pair of operators \(f\) and \(g\) takes the form
\[
\lim_{|x| \to \infty} |f(x)| = \lim_{|x| \to \infty} |g(x)| = \infty.
\]

We proved the following surjectivity theorem:

THEOREM: 5

Let \(f, g: \mathbb{R}^n \to \mathbb{R}\) satisfy the conditions

\begin{align*}
(1.5.1) \quad & f, g \text{ are continuous;} \\
(1.5.2) \quad & \lim_{|x| \to \infty} |f(x)| = \lim_{|x| \to \infty} |g(x)| = \infty; \\
(1.5.3) \quad & \text{the common fixed points set of } f \text{ and } g \text{ i.e.} \\
& F(f, g) \neq \emptyset; \quad \text{and one of the conditions; either} \\
(1.5.4) \quad & \text{there is an } x_0 \in F(f, g) \text{ such that} \\
& f(x) - x_0 = k(g(x) - x_0) \text{ implies } k \geq 0 \\
& \text{for each } x \in \mathbb{R}^n, \ x \neq x_0 \\
& \text{or} \\
(1.5.5) \quad & \text{there is an } x_0 \in F(f, g) \text{ such that} \\
& f(x) - x_0 = k (g(x) - x_0) \text{ implies } k \leq 0 \\
& \text{for each } x \in \mathbb{R}^n, \ x \neq x_0
\end{align*}
or

(1.5.6) there is an \(x_0 \in F \) \(f, g \) and an \(r > 0 \) such that the scalar product satisfies

\[
(f(x) - x_0, g(x) - x_0) \geq 0 \text{ for all } x \in \mathbb{R}^n, \\
|x - x_0| \geq r,
\]

or

(1.5.7) there is an \(x_0 \in F \) \(f, g \) and an \(r > 0 \) such that

\[
(f(x) - x_0, g(x) - x_0) \leq 0 \text{ for all } x \in \mathbb{R}^n, \\
|x - x_0| \geq r.
\]

Then \(f(\mathbb{R}^n) = g(\mathbb{R}^n) = \mathbb{R}^n \).

PART-2: FIXED POINT THEOREMS

1.6 Let \(F \) be a mapping of a set \(X \) into itself. An element \(u \in X \) is said to be a fixed point of the mapping \(F \) if \(Fu = u \). By a fixed point theorem we mean a statement which asserts that under certain conditions (on the mapping \(F \) and on the space \(X \)) a mapping \(F \) of \(X \) into itself admits one or more fixed points. Historically first theorem of this type involves a space \(X \) which is a topologically simple subset of \(\mathbb{R}^n \) and a mapping of \(X \) into itself which is continuous. Brouwer's fixed point theorem asserts the existence of a fixed point whenever \(X \) is the unit ball in \(\mathbb{R}^n \) and \(F \) is continuous. In this theorem \(X \) was replaced by any homeomorphic thereof.

Schauder [67] extended Brouwer's theorem to the case where \(X \) is a compact convex subset of a normed
linear space. Further, this theorem was extended by Tychonoff for locally convex topological vector space. Banach [12] obtained a fixed point theorem for contraction mapping. Edelstein [29] considered contractive mapping and proved a fixed point theorem for such mappings.

Recently several generalizations of contraction mappings considered by Kannan [42,43], Husain and Sehgal [38] and Caristi [16].

1.7 COMMON FIXED POINTS IN METRIC SPACES

In 1976, G. Jungck [40] obtained a fixed point theorem in a complete metric space as following:

THEOREM. B:

Let \((X, d)\) be a complete metric space and \(I: X \to X\) be the identity mapping of \(X\) and \(f\) be a continuous self mapping of \((X, d)\). If there exists a mapping \(g: X \to X\) and a constant \(0 \leq \alpha < 1\) such that

\[
(1.7.1) \quad f(g(x)) = g(f(x)) \text{ for every } x \in X,
\]

\[
(1.7.2) \quad g(X) \subseteq f(X),
\]

\[
(1.7.3) \quad d(gx, gy) \leq \alpha d(fx, fy) \text{ for every } x, y \in X,
\]

then \(f\) and \(g\) have a unique common fixed point.

The well-known Banach contraction principle can be obtained by taking \(f = I\). In recent years many
authors presented several generalizations of above theorem.

DEFINITION 1:

Let \((X,d)\) be a metric space and let \(S\) and \(I\) be mapping of \(X\) into itself. We define the pair \((S,I)\) said to be weak ** commutating, if \(S(X) \subseteq I(X)\) and

\[
d(S^2I^1x, I^2S^2x) \leq d(S^2Ix, IS^2x) \leq d(SI^2x, I^2Sx) \\
\leq d(SIx, ISx) \leq d(S^2x, I^2x)
\]

for all \(x\) in \(X\).

It is shown by an example that two commuting mappings are weak** commuting but two weak** commuting mappings do not necessarily commute.

DEFINITION 2:

A map \(T:X \rightarrow X\) is called idempotent if \(T^2 = T\).

DEFINITION 3:

The map \(T\) is called rotative w.r.t.\(I\),

if \(d(Tx, I^2x) \leq d(Ix, T^2x)\)

for all \(x\) in \(X\),

In this context, we have established in chapter-VI a common fixed point theorem for three self maps of a complete metric space satisfying a rational inequality which is a generalization of the results of Diviccaro, Sessa and Fisher [21] and Fisher [30].
THEOREM 6:

Let S,T and I be three mappings of a complete metric space (X,d) such that for all x,y in X either

\[(1.7.4) \ d(S^2x, T^2y) \leq ad(I^2x, S^2x) d(I^2y, T^2y) + bd(I^2x, T^2y) \leq d(I^2x, S^2x) + d(I^2y, T^2y)\]

if $d(I^2x, S^2x) + d(I^2y, T^2y) \neq 0$,

where $1 < a < 2$ and $b > 0$, or

\[(1.7.5) \ d(S^2x, T^2y) = 0 \text{ if } d(I^2x, S^2x) + d(I^2y, T^2y) = 0\]

Suppose that the range of I contains the range of S and T. If

\[(1.7.6) \text{ either } I^2 \text{ is continuous, } I \text{ is weak** commuting with } S \text{ and } T \text{ is rotative w.r.t. } I, \text{ or}\]

\[(1.7.7) \ I^2 \text{ is continuous, } I \text{ is weak** commuting with } T \text{ and } S \text{ is rotative w.r.t. } I, \text{ or}\]

\[(1.7.8) \ S^2 \text{ is continuous, } S \text{ is weak** commuting with } I \text{ and } T \text{ is rotative w.r.t. } S, \text{ or}\]

\[(1.7.9) \ T^2 \text{ is continuous, } T \text{ is weak** commuting with } I \text{ and } S \text{ is rotative w.r.t. } T, \text{ then } S, T \text{ and } I \text{ have a unique common fixed point } z. \text{ Further } z \text{ is the unique common fixed point of } S \text{ and } I \text{ and } T \text{ and } I.\]

A pair of maps (S,T) of metric space (X,d) into itself is called $(1,m)$ linearly weak, if

\[(1-1) \ d(S^kx, T^mx) + (m-1) \ d(S^kx, T^mx) \leq (1+m-2) \ d(S^kx, T^mx)\]
for all \(x \) in \(X \), where \(l, m \) are positive integers such that at least one of \(l, m > 1 \).

We proved the following fixed point theorem for \((l, m)\)-linearly weak maps which is a generalization of the recent result of Fisher [29].

THEOREM 7:

Let \(S \) and \(T \) be \((l, m)\)-linearly weak maps of a complete metric space \((X, d)\) into itself satisfying the following inequality

\[
(1.7.10) \quad d((S^l T^m)^x, (T^m S^l)^y) \leq c \max \{ d((S^l T^m)^x, (T^m S^l)^y), d(S^l (T^m S^l)^y, T^m (S^l T^m)^x), d((S^l T^m)^x, T^m (S^l T^m)^x), d(S^l (T^m S^l)^y, (T^m S^l)^y) : 0 \leq c < 1, \ l, m \text{ and } p \text{ are fixed positive integers and } S^l, T^m \text{ are continuous maps.} \]

Then \(S \) and \(T \) have a unique common fixed point \(z \).

Further, we proved some new results on fixed point theorems on expansion mappings.

In 1984, Wang, Li, Gao and Iseki [74] established fixed point theorems for certain expansion mappings.

Rhoades [63] proved the following theorem for a pair of surjective mappings in a complete metric spaces.
THEOREM C:

Let f, g be surjective self maps of a complete metric space (X, d). Suppose there exists a constant $a > 1$ such that

$$\text{(1.7.11)} \quad d(fx, gy) \geq ad(x, y)$$

for each x, y in X. Then f and g have a unique common fixed point.

A distinct result from that of Wang, Li, Gao and Iseki [74] and Rhoades [63] was established by Dubey and Pathak [24] as following:

THEOREM D:

Let f and g be surjective continuous self maps of a complete metric space (X, d). Suppose there exists a constant $a > 1$ such that

$$\text{(1.7.12)} \quad [d(fx, gy)]^2 \geq a[d(x, fx) d(y, gy)]$$

for each x, y in X, then f and g have a unique common fixed point.

In this context, we proved the following theorem by unifying the contraction principles of Dubey and Pathak [24] and Rhoades[63].

THEOREM 8:

Let f and g be surjective continuous self maps of a complete metric space (X, d). Suppose there exists a constant $a > 1_{1/2}$ such that

$$\text{(1.7.13)} \quad d(fx, gy) \geq a[d(x, y) + \{d(x, fx), d(y, gy)\}]^{1/2}$$
for each x, y in X, then f and g have a unique common fixed point.

For a sequence of surjective continuous self maps we proved the following:

THEOREM. 9:

Let $\{ f_n \}$ $(n=1, 2, \ldots)$ be a sequence of surjective continuous self maps of a complete metric space X. If there exists a real number $a > 1/2$ such that for all $n \in \mathbb{N}$

\[(1.7.14) \quad d(f_n x, f_n y) \geq \min \{ \left(d(x, y) + (d(x, f_0 x) \\
\quad d(y, f_0 y) \right)^{1/2} \}, d(x, f_0 x), d(y, f_0 y) \}\]

for each $x, y \in X$, then there exists a common fixed point of f_n in X.

Khan, Swaleh and Sessa [49] proved fixed point theorems for self maps on complete metric spaces by altering the distances between the points with the use of a function $\Psi: \mathbb{R}^+ \rightarrow \mathbb{R}$ satisfying the following properties:

\[(1.7.15) \quad \Psi \text{ is continuous and increasing in } \mathbb{R}^+; \]

\[(1.7.16) \quad \Psi(t) = 0. \]

The set of above function Ψ further denoted by Φ.

In [49] the following theorem was proved.

THEOREM. E:

Let (X, d) be a complete metric space, T a self map of X, and $\Psi: \mathbb{R} \rightarrow \mathbb{R}$ an increasing continuous function satisfying property (1.7.16).
Further more, let a, b, c be three decreasing function from $\mathbb{R}^+ \setminus \{0\}$ into $[0,1]$ such that $a(t) + 2b(t) + c(t) < 1$ for every $t>0$. Suppose that T satisfies the following condition:

\[
\Psi(d(Tx,Ty)) \leq a(d(x,y)) \Psi(d(x,y)) + b(d(x,y)).
\]

I. $\{\Psi(d(x,Tx)) + \Psi(d(y,Ty))\} + c(d(x,y))$

\[
\min \{\Psi(d(x,Ty)), \Psi(d(y,Tx))\}
\]

where $x, y \in X$ and $x \neq y$. Then T has a unique fixed point.

Further more, our main theorem is an improvement upon some fixed point theorems of Skof [70], Rakotch [65], Reich [66], Khan, Swaleh and Sessa [49] and results of Fisher [34] and Edelstein [28] in compact metric spaces.

A result in compact metric spaces proved by Fisher [34] as following:

THEOREM.F:

Let T be a continuous self map of a compact metric space (X,d) such that

II. $d(Tx,Ty) < 1/2 \{d(x,Tx) + d(y,Ty)\}$

for all distinct x, y in X. Then T has a unique fixed point.

In fact, we obtained the generalized version of above Theorem F as the following:
THEOREM 1.10:

Let T be a continuous self map of a metric space (X, d) such that for some $x_0 \in X$ the sequence $\{T^n x_0\}$ has a cluster point $z \in X$. Let there exist a continuous function $\psi : \mathbb{R}^+ \to \mathbb{R}^+$ satisfying the property (1.7.16).

Further more, for all distinct x, y in X the inequality:

$$\psi(d(Tx, Ty)) < c \left\{ \psi(d(x, y)) + \alpha \left(\psi(d(x, Ty)) + \psi(d(y, Tx)) \right) \right\}^{1/2} + (1-c)/2 \left\{ \psi(d(x, Tx) + \psi(d(y, Ty)) \right\}$$

holds, where $0 \leq c < 1$ and $\alpha \geq 0$. then z is the unique fixed point of T.

Assuming $\alpha = 0$ in condition III and if $\psi(t) = t$ for any $t > 0$ and $c = 1$, Theorem 10 becomes a well known result of Edelstein [28].

1.8 COMMON FIXED POINTS IN BANACH SPACES

In 1986, Pathak [54] presented the following:

DEFINITION 1:

Two self mappings T and I of a metric space (X, d) are said to be weak commuting if

$$d(TIx, ITx) \leq d(T^2 x, I^2 x)$$

for all x in X. Two commuting mappings are weak commuting but converse is not generally true.

Two self mappings T and I of a closed convex subset C of a Banach space X are said to be weak commuting
pair if
\[(1.8.1) \quad ||T^2x - T^2x|| \leq ||T^2Ix - T^2x|| \leq ||TI^2x - IT^2x|| \]
\[\leq ||TIx - ITx|| \leq ||T^2x - I^2x|| \]
for any \(x\) in \(X\) and satisfy the inequality
\[(1.8.2) \quad ||T^2x - T^2y|| \leq a \quad ||I^2x - I^2y|| + (1-a) \max\{||T^3x - I^2x||, ||T^2y - I^2y||\} \]
for any \(x, y\) in \(C\), where \(0 < a < 1\). If \(I\) is linear and nonexpansive in \(C\) such that \(I^2C\) contains \(T^2C\), then \(T\) and \(I\) have a unique common fixed point in \(C\).

In 1986, Fisher and Sessa [35] proved the following:

Theorem G:

Let \(T\) and \(I\) be two weakly commuting mappings of \(C\) into itself satisfying the inequality
\[(1.8.3) \quad ||Tx - Ty|| \leq a \quad ||Ix - Iy|| + (1-a) \max\{||Tx-Ix||, \quad ||Ty-Iy||\} \]
for all \(x, y\) in \(C\), where \(0 < a < 1\). If \(I\) is linear, nonexpansive in \(C\) and such that \(IC\) contains \(TC\), then \(T\) and \(I\) have a unique common fixed point in \(C\).

In this context, we have established in chapter VII a generalized version of above Theorem G as following:

Theorem II:

Let \(T\) and \(I\) be two weak** commuting mappings of \(C\) into itself satisfying the inequality.
(1.8.4) \[\|T^2x - T^2y\| \leq a \|T^2x - I^2y\| + (1-a) \]
\[
\max \left\{ \|T^2x - I^2x\|, \|T^2y - I^2y\| \right\},
\]
for all \(x, y \in C \), where \(0 < a < 1 \). If \(I \) is linear, nonexpansive in \(C \) and such that \(I^2C \) contains \(T^2C \), then \(T \) and \(I \) have a unique common fixed point in \(C \).

Further, we proved a common fixed point theorem for three involution maps.

In 1986, Pathak [53] established the following fixed point theorem for commuting mapping in closed convex subset of Banach space.

THEOREM.

Let \(M \) be a non-empty closed convex subset of a Banach space \(B \). Let \(F: M \rightarrow M \) and \(G: M \rightarrow M \) satisfy the following conditions:

(1.8.5) \(F \) and \(G \) commutes.

(1.8.6) \(F^2 = I \), \(G^2 = I \) where \(I \) denotes the identity mapping.

(1.8.7) \[\|Fx-Fy\|^2 \leq q \max \left\{ \|Gx - Fx\|, \|Gy - Fy\|, \|Gx - Fy\| \right\} \]
\[\|Gy - Fx\|, \|Gx - Fy\|, \|Gy - Fx\| \]
for all \(x, y \in M \), where \(q \in (0, 1) \). Let \(x_1 \in M \) be arbitrary, \(t \in (0, 1) \) and

\[Gx_{n+1} = (1-t) Gx_n + t Fx_n \]
for each integer \(n \geq 1 \). If the sequence \(\{Gx_n\} \)
converges to a point of \(F \) and \(G \).

Further, the above fixed point theorem improved for three mappings by Dubey [23]. We precisely proved the following theorem in a closed convex subset of a Banach space which is a slight
variant of the result of Pathak [55].

THEOREM.12:

Let \(M \) be a non-empty closed convex subset of a Banach space \(B \). Let \(F, G \) and \(H : M \to M \) satisfy the following conditions:

(1.8.8) \(F, G \) and \(H \) commutes.

(1.8.9) \(F^2 = I, \ G^2 = I, \ H^2 = I \) where \(I \) denotes the identity mapping.

(1.8.10) \[\| Fx - Fy \| \leq q \max \{ \| GHx - Fx \|, \| GHx - Fy \|, \| GHy - Fx \|, \| GHy - Fy \| \} \]

for all \(x, y \in M \), where \(q \in (0,1) \). Let \(x_1 \in M \) arbitrary, \(t_n \in (0,1) \) where \(t_n \to 1 \) as \(n \to \infty \) and

\[GHx_{n+1} = (1-t_n) \cdot GHx_n + t_n Fx_n \]

for each integer \(n \geq 1 \). If the sequence converges to a point \(u \in M \), then \(u \) is the unique common fixed point of \(F, G, \) and \(H \).

Further, the results obtained have been applied to solve non-linear equations in the following:

THEOREM.13:

Let \(\{ f_n \} \) be a sequence of elements in a Banach space \(B \). Let \(\omega_n \) be the unique solution of the equation \(u - FGHu = f_n \), where \(F, G \) and \(H \) are mappings of \(B \) into itself satisfy all the conditions of
Theorem 12. If \(\| f_n \| \to 0 \) as \(n \to \infty \) then the sequence \(\{ w_n \} \) converges to the solution of the equation \(u = Fu = Gu = Hu \).

1.9 FIXED POINTS IN NORMED SPACES

In 1983, Naimpally and Singh \([51]\) extended the corresponding results of Rhoades \([64]\), and Hicks and Kubicek \([71]\) and obtained that for mapping \(T \) which satisfy following conditions, if the sequence of Ishikawa iterates converges, it converges to the fixed point of \(T \).

Let \(X \) be a Banach space and \(C \) be a non-empty subset of \(X \). Let \(T: C \to C \) be a mapping. The Ishikawa scheme was defined as follows:

(i) \(x_0 \in C \),
(ii) \(y_n = \beta_n T x_n + (1 - \beta_n) x_n \), \(n \geq 0 \)
(iii) \(x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T y_n \), \(n \geq 0 \)

In the Ishikawa scheme, \(\{ \alpha_n \} \), \(\{ \beta_n \} \) satisfy \(0 < \alpha_n \leq \beta_n \leq 1 \) for all \(n \),

\[\lim_{n \to \infty} \beta_n = 0 \]

and \(\sum \alpha_n \beta_n = \infty \).

The following assumptions were considered:

(iv) \(0 \leq \alpha_n \), \(\beta_n \leq 1 \) for all \(n \),
(v) \(\lim_{n \to \infty} \alpha_n = \alpha > 0 \),
(vi) \(\lim_{n \to \infty} \beta_n = \beta < 1 \).

The two contractive conditions used as following:
There exists a constant k, $0<k<1$ such that for all $x, y \in X$,

\begin{equation}
\|Tx-y\| \leq k \max \{\|x-y\|, \|x-Tx\|, \|y-Ty\|, \|x-Ty\| + \|y-Tx\|\}.
\end{equation}

(1.9.2) At least one of the following conditions holds:

(i) For each $x, y \in X$,

\[\|x-Tx\| + \|y-Ty\| \leq a \|x-y\|, \quad 1 \leq a < 2; \]

(ii) For each $x, y \in X$,

\[\|x-Tx\| + \|y-Ty\| \leq b \{\|x-Ty\| + \|y-Tx\| + \|x-y\|\}, \quad 1 \leq b < 2; \]

(iii) For each $x, y \in X$,

\[\|x-Tx\| + \|y-Ty\| + \|T_x-T_y\| \leq c \{\|x-Ty\| + \|y-Tx\|\}, \quad 1 \leq c < 2; \]

(iv) For each $x, y \in X$,

\[\|T_x-T_y\| \leq k \max \{\|x-y\|, \|x-Tx\|, \|y-Ty\|, \|x-Ty\| + \|y-Tx\|\}/2\}, \quad 0 \leq k < 1. \]

In chapter VIII we extended the contractive conditions obtained by Naim-pally and Singh [51], for a pair of maps by using Mann-iteration scheme as following:

THEOREM 14:

Let X be a closed, convex, bounded subset of a normed space X and let T_1 and T_2 be self mappings satisfying any one of the following:

For all x, y in X and p is any integer,

(i) $\|T_1x-T_2y\|^p \leq q \max \{c \{\|x-y\|^p, \|x-T_1x\|^p, \|y-T_2y\|^p, \|x-T_2y\|^p + \|y-T_1x\|^p\}, \quad 0 \leq q < 1.$
(ii) \[\| x - T_1 x \|^p + \| y - T_2 y \|^p \leq a \| x - y \|^p, \quad 1 \leq a < 2. \]

(iii) \[\| x - T_1 x \|^p + \| y - T_1 y \|^p \leq b (\| x - T_2 y \|^p + \| y - T_1 x \|^p), \quad 1 \leq b < 2 \cdot 3. \]

(iv) \[\| x - T_1 x \|^p + \| y - T_2 y \|^p + \| T_1 x - T_2 y \|^p \leq c (\| x - T_2 y \|^p + \| y - T_1 x \|^p), \quad 1 \leq c < 3 \cdot 2 \cdot 6. \]

(v) \[\| T_1 x - T_2 y \|^p \leq k \max \{ c \| x - y \|^p, \| x - T_1 x \|^p, \| y - T_2 y \|^p, \| x - T_2 y \|^p + \| y - T_1 x \|^p \}, \quad 0 \leq k < 1. \]

Let the sequence \(\langle x_n \rangle \) be defined in accordance with Mann iteration process associated with two mappings \(T_1 \) and \(T_2 \) as follows:

(vi) \[x_{2n+1} = (1 - c_{2n}) x_{2n} + c_{2n} T_1 x_{2n}. \]

(vii) \[x_{2n+1} = (1 - c_{2n+1}) x_{2n+1} + c_{2n+1} T_2 x_{2n+1}. \]
for $n \geq 0$ where $c_0 = 1, 0 < c_n < 1$ for $n > 0$ and $\lim c_n = h > 0$.

If $\langle x_n \rangle$ converges to z in X then z is a common fixed point of T_1 and T_2.

1.10: FIXED POINTS IN HAUSDORFF SPACES

In Chapter IX, we obtained some new results on fixed point theorem for certain contractive mappings on Hausdorff spaces.

Definition 1:

Let (X, d) be a metric space. A mapping T of X into itself is said to be contractive if

$$d(Tx, Ty) < d(x, y) ; \forall x \neq y \in X.$$

In fact, we proved the following:

THEOREM 1.5:

Let T be a continuous mapping of a Hausdorff spaces X into itself and let f be a continuous mapping of $X \times X$ into the non negative reals such that

(1.10.1) $f(x, y) \neq 0, x \neq y,$

(1.10.2) $\frac{f(Tx, Ty)}{f(x, Tx)} \leq \frac{d(x, y)}{f(x, Ty)}$

\[f(y, Ty) \geq f(x, y) + \beta \{f(x, y)\}^2 \]
for all \(x \neq y ; \alpha , \beta \in \mathbb{R}_+ \) and \(\alpha + \beta < 1 \).

\[
(1.10.3) \quad \{ f(x,y) \}^3 \geq \{ f(x,y) \}^2 f(y,y), \quad x \neq y \in X.
\]

If for some \(x_0 \in X \) the sequence \(x_n = \{ T^n x_0 \} \) has a convergent subsequence, then \(T \) has a unique fixed point.

Further, we extended the above theorem for a pair of mappings. Precisely, we proved the following:

THEOREM 16:

Let \(T_1 \) and \(T_2 \) be continuous mappings of a Hausdorff space \(X \) into itself and let \(f \) be a continuous mapping of \(X \times X \) into non-negative reals such that

\[
(1.10.4) \quad f(x,y) = f(y,x) ; \quad \forall x,y \in X.
\]

\[
(1.10.5) \quad f(x,y) = 0 , \quad \forall x,y \in X.
\]

\[
(1.10.6) \quad \{ f(T_1 x, T_2 y) \}^2 \leq \alpha \{ f(x,T_1 x) \}^2 \quad f(y,T_2 y)/f(x,y) + \beta \{ f(x,y) \}^2
\]

for all \(x \neq y \in X ; \alpha , \beta \in \mathbb{R}_+ \) and \(\alpha + \beta < 1 \).

\[
(1.10.7) \quad \{ f(x,y) \}^3 \geq \{ f(x,x) \}^2 f(y,y) ; \quad \forall x,y \in X.
\]
If some \(x_0 \in X \), the sequence \(\{ x_n \} \) where \(T_1 x_{2n} = x_{2n+1} \) and \(T_2 x_{2n+1} = x_{2n+2} \) for \(n = 0,1,2 \ldots \) has a convergent subsequence of the type \(\{ x_{(2p+1)n} \} \), where \(p \in \mathbb{N} \) is fixed and \(n \in \mathbb{N} \), then \(T_1 \) and \(T_2 \) have a unique fixed point.

Our next theorem deals with a sequence of continuous mappings of a Hausdorff space into itself and let \(f \) be a continuous mapping of \(X \times X \) into the non-negative reals such that:

\[
\begin{align*}
(1.10.8) \quad & f(x,y) = f(y,x) \ ; \ \forall x,y \in X, \\
(1.10.9) \quad & f(x,y) \not< 0 \ ; \ \forall x \not< y \in X, \\
(1.10.10) \quad & \{ f(T_i x, T_{i+1} y) \}^2 \leq \alpha \{ f(x, T_i x) \}^2 \\
& \quad f(y, T_{i+1} y) + f(x, y) + \\
& \quad \beta \{ f(x, y) \}^2.
\end{align*}
\]
for all $x, y \in X; \alpha, \beta \in \mathbb{R}^+: \alpha + \beta < 1$ and $T_{k+1} = T_k$.

(1.10.11) $\{ f(x, y) \}^3 \geq (f(x, x))^2 f(y, y); \quad \forall x, y \in X.$

If for some $x_0 \in X$ the sequence $\{x_n\}$, where $x_1 = T_1 x_0$,

\[x_2 = T_2 x_1, \quad \ldots, \]

\[x_k = T_k x_{k-1}, \quad x_{k+1} = T_1 x_k, \quad x_{k+2} = T_2 x_{k+1}, \ldots \]

\[x_{2k} = T_k x_{2k-1}. \]

\[\begin{align*}
 x_{n+1} &= T_1 x_n, \quad x_{n+2} = T_2 x_{n+1} \quad \ldots, \\
 x_{(n+1)k} &= T_k x_{(n+1)k-1}
\end{align*} \]

for $n = 0, 1, 2, \ldots$, has a convergent subsequence of these types $\{x_{(m_k+1)n}\}$, where $m \in \mathbb{N}$ is fixed and $n \in \mathbb{N}$, then T_1, T_2, \ldots, T_k has a unique common fixed point.

\[
\star \star \star
\]