Index

Chapter-1 Introduction
Chapter-2 Review of Literature
Chapter-3 Aims and Objectives
Chapter-4 Materials and Methods
Chapter-5 Results

5.1 Type-I Diabetic Retinopathy
 5.1.1 *Momordica charantia*
 5.1.1.1 Glycemic Parameters
 5.1.1.2 Effect of *M. charantia* on body weight and food and water intake
 5.1.1.3 Clinical Ocular Examination
 5.1.1.4 Angiogenic Parameters
 5.1.1.5 Inflammatory Parameters
 5.1.1.6 Antioxidant Parameter
 5.1.1.7 Histological Changes
 5.1.1.8 Immunohistochemical Changes

 5.1.2 *Boerhaavia diffusa*
 5.1.2.1 Glycemic Parameters
 5.1.2.2 Effect of *B. diffusa* on body weight and food and water intake
 5.1.2.3 Clinical Ocular Examination
 5.1.2.4 Angiogenic Parameters
 5.1.2.5 Inflammatory Parameters
 5.1.2.6 Antioxidant Parameter
 5.1.2.7 Histological Changes
 5.1.2.8 Immunohistochemical Changes

 5.1.3 *Eugenia jambolana*
 5.1.3.1 Glycemic Parameters
 5.1.3.2 Effect on body weight and food and water intake
 5.1.3.3 Lenticular and Fundus changes
 5.1.3.4 Effects on Retinal Angiogenic Parameters
 5.1.3.5 Effects on Retinal Inflammatory Markers
 5.1.3.6 Effects on oxidative stress
 5.1.3.7 Histological changes
 5.1.3.8 Immunohistochemistry

 5.1.4 *Tinospora cordifolia*
 5.1.4.1 Glycemic Parameters
 5.1.4.2 Body weight and food and water intake
 5.1.4.3 Clinical Ocular Examination
 5.1.4.4 Angiogenic Parameters
 5.1.4.5 Anti-inflammatory Parameters
5.1.4.6 Antioxidant Parameters
5.1.4.7 Histological Changes
5.1.4.8 Immunohistochemical Changes

5.1.5 Polyherbal Combination (PHC)
5.1.5.1 Glycemic Parameters
5.1.5.2 Effect of polyherbal combination on body weight and food and water intake
5.1.5.3 Clinical Ocular Examination
5.1.5.4 Angiogenic Parameters
5.1.5.5 Inflammatory Parameters
5.1.5.6 Antioxidant Parameters
5.1.5.7 Histological Changes
5.1.5.8 Immunohistochemical Changes

5.2 Type-II Diabetic Retinopathy

5.2.1 Momordica charantia
Role of M. charantia (MC) in management of Glycemic parameters in type-2 diabetic rats
5.2.1.1 Effect of M. charantia on body weight and food and water intake of animals
5.2.1.2 Ocular examination
5.2.1.3 Effect of MC on Angiogenic parameters
5.2.1.4 Anti-inflammatory actions of MC in type-2 diabetic retinopathy
5.2.1.5 Effect of MC on antioxidant enzymes in type-2 diabetic retinopathy
5.2.1.6 Histological analysis of retina

5.2.2 Boerhavia diffusa
Role of Boerhavia diffusa (BD) in management of Glycemic parameters in type-2 diabetic rats
5.2.2.1 Effect of Boerhavia diffusa on body weight and food and water intake of animals
5.2.2.2 Ocular examination
5.2.2.3 Effect of BD on Angiogenic parameters
5.2.2.4 Anti-inflammatory actions of BD in type-2 diabetic retinopathy
5.2.2.5 Effect of BD on antioxidant enzymes in type-2 diabetic retinopathy
5.2.2.6 Retinal Histology

5.2.3 Eugenia jambolana
Role of EJ in management of Glycemic parameters in type-2 diabetic rats
5.2.3.1 Effect on body weight and food and water intake
5.2.3.2 Ocular examination
5.2.3.3 Effect of EJ on Angiogenic parameters
5.2.3.4 Anti-inflammatory actions of E. jambolana in type-2 diabetic retinopathy
5.2.3.5 Effect of EJ on antioxidant enzymes in type-2 diabetic retinopathy
5.2.3.6
5.2.4 *Tinospora cordifolia*

5.2.4.1 Role of TC in management of glycemic parameters in type-2 diabetic rats
5.2.4.2 Effect of TC on body weight and food and water intake of animals
5.2.4.3 Ocular examination
5.2.4.4 Effect of TC on Angiogenic parameters
5.2.4.5 Anti-inflammatory actions of TC in type-2 diabetic retinopathy
5.2.4.6 Effect of TC on antioxidant enzymes in type-2 diabetic retinopathy
5.2.4.7 Retinal Histology

5.2.5 *Polyherbal combination (PHC)*

5.2.5.1 Role of PHC in management of glycemic parameters in type-2 diabetic rats
5.2.5.2 Effect on body weight and food and water intake of animals
5.2.5.3 Ocular examination
5.2.5.4 Effect of PHC on Angiogenic parameters
5.2.5.5 Anti-inflammatory actions of PHC in type-2 diabetic retinopathy
5.2.5.6 Effect of PHC on antioxidant enzymes in type-2 diabetic retinopathy
5.2.5.7 Histological analysis

Chapter-6 Discussions
Chapter-7 Summary and Conclusions
Chapter-8 References
Annexures

List of Figures

Chapter-2 *Review of Literature*

2.1 Structure of eye
2.2 Image of Retina
2.3 Microaneurysms, Small and punctuate red dots
2.4 Haemorrhages (HA), dispersed red blotches with irregular perimiters
2.5 IRMA, Irregular calibres and tortousity of the smaller retinal vessels
 Venous beading, irregular distension of large and or smaller retinal vein
2.6 calibres
2.7 Soft exudates (Cotton wool spots), areas of axoplasmic accumulation
 Hard exudates, areas of lipoprotein mal-absorption, yellowish well defined contours
2.8 Neo Vascularisation Elsewhere, (NVE) Growth of capillary like new
 vessels on fundus but not OD
2.9 NeoVascularisationDisk, (NVD), Development of microvessels into the vitreo-retinal interface at OD
2.10 Pre-retinal Haemorrhage, extravasated blood between retina and vitreous
2.12 Diabetic macular oedema
2.13 Increased production of AGE precursors and its pathologic consequences
2.14 Polyol Pathway
 Hexosamine pathway. Hyperglycemia increases flux through the
2.15 hexosamine pathway
 Hyperglycemia-induced biochemical alterations caused by oxidative stress
2.16 leading to diabetic retinopathy

Chapter 4 Materials and Methods
4.1 Slit Lamp Microscope for anterior segment photographs
4.2 Hand-held Fundus Camera for posterior segment photographs
4.3 Lens photograph divided into 12 clock hours to count lenticular changes

Chapter 5 Results- Type 1 DR
5.1.1 Effect of MC on Blood glucose
5.1.2 Effect of MC on %HbA1c
 Photographs showing lenticular and retinal changes at the end of 24 weeks of diabetes
5.1.4 Photographs showing fluroscein angiography at the end of 24 weeks of diabetes
5.1.5 Effect of MC on VEGF after 24 weeks
5.1.6 Effect of MC on PKC after 24 weeks
5.1.7 Effect of MC on Inflammatory IL-1b after 24 weeks of diabetes
5.1.8 Effect of MC on Inflammatory TNF-a after 24 weeks of diabetes
5.1.9 Effect of MC on Antioxidant Parameters after 24 weeks of diabetes
5.1.10 Effect of MC on catalase enzyme after 24 weeks of diabetes
5.1.11 High power photomicrograph of retina of rats (HE x 400)
 High Power photomicrograph of PAS stained section of kidney of rats (PAS x 400)
5.1.13 High Power photomicrograph of rat pancreas (HE x 400)
5.1.14 High power photomicrograph showing portal triad structures of rat liver
 High power photomicrograph of heart of rats showing normal cardiac muscle fibres and coronary artery (HE x 400)
 High power photomicrograph of retina showing the pattern of staining for BAX and BCL-2 in the different layers of the retina (IHC x 40x).
5.1.17 Effect of BD on blood glucose
5.1.18 Effect of BD on %HbA1c
 Photographs showing lenticular and retinal changes at the end of 24 weeks of diabetes
5.1.19 Photographs showing Fluorescein angiography of (a) Normal rat (b) Diabetic rat (c) BD treated rat
5.1.20 Effect of BD on VEGF after 24 weeks of diabetes
5.1.22 Effect of BD on PKC after 24 weeks of diabetes
5.1.23 Effect of BD on TNF-a after 24 weeks of diabetes
5.1.24 Effect of BD on IL-1b after 24 weeks of diabetes
5.1.25 Effect of BD on Antioxidant (GSH) after 24 weeks
5.1.26 Effect of BD on Antioxidant catalase after 24 weeks
High power photomicrographs showing blood vessel (Ret BV) from the retina of rat
5.1.27 High Power photomicrograph of PAS stained section of renal parenchyma
5.1.28 High Power photomicrographs of pancreas of rat
Low power photomicrograph from section of liver from normal control group animal showing normal hepatic parenchyma
5.1.29 High power photomicrograph of cardiac muscle and coronary artery (BV) of rat showing normal arterial wall and cardiac muscle fibres
5.1.30 High power photomicrograph of retina showing the pattern of staining for BAX
5.1.31 Effect of EJ on blood glucose
5.1.32 High power photomicrograph of retina showing retinal blood vessel
5.1.33 Effect of EJ on %HbA1c
Photographs showing lenticular and retinal changes at the end of 24 weeks of diabetes
5.1.34 Effect of EJ on %HbA1c
Photographs showing lenticular and retinal changes at the end of 24 weeks of diabetes
5.1.35 Effect of EJ on VEGF after 24 weeks of diabetes
5.1.36 Effect of EJ on PKC after 24 weeks of diabetes
5.1.37 Effect of EJ on Inflammatory markers TNF-α after 24 weeks of diabetes
5.1.38 Effect of EJ on IL-1β after 24 weeks of diabetes
5.1.39 Effect of EJ on Antioxidant GSH after 24 weeks of diabetes
5.1.40 Effect of EJ on Antioxidant Catalase after 24 weeks of diabetes
5.1.41 High power photomicrograph of retina of rats
5.1.42 High Power photomicrograph of PAS stained section of renal parenchyma
5.1.43 High Power photomicrograph of pancreas of rat
5.1.44 High power photomicrograph of cardiomyocyte and coronary artery
5.1.45 Immunohistochemical staining of BAX and BCL-2 in retinas
5.1.46 Effect of TC on fasting blood glucose in type-1 diabetic rats
5.1.47 Effect of TC on %HbA1c in type-1 diabetic rats
Photographs showing lenticular and retinal changes at the end of 24 weeks of diabetes
5.1.48 Effect of TC on VEGF after 24 weeks of diabetes
5.1.49 Effect of TC on PKC after 24 weeks of diabetes
5.1.50 Effect of TC on IL-1β after 24 weeks of diabetes
5.1.51 Effect of TC on TNF-α after 24 weeks of diabetes
5.1.52 Effect of TC on glutathione (GSH) activity after 24 weeks of diabetes
5.1.53 Effect of TC on Catalase activity after 24 weeks of diabetes
5.1.54 High power photomicrograph of retina showing retinal blood vessel
5.1.55 High Power photomicrograph of PAS stained section of kidney of rats
5.1.56 High Power photomicrograph of rat pancreas
High power photomicrograph of heart of rats showing cardiac muscle fibres and coronary artery
5.1.62 High power photomicrograph showing portal triad structures of rat liver
5.1.63 High power photomicrograph of retina showing the pattern of staining for BAX and BCL-2 in the different layers of the retina
5.1.64 Effect of PHC on fasting blood glucose
5.1.65 Effect of PHC on %HbA1c
5.1.66 Photographs showing lenticular and retinal changes at the end of 24 weeks of diabetes
5.1.67 Photographs showing Fluorescein angiography
5.1.68 Effect of PHC on VEGF after 24 weeks of diabetes
5.1.69 Effect of PHC on PKC after 24 weeks of diabetes
5.1.70 Effect of PHC on TNF-α after 24 weeks of diabetes
5.1.71 Effect of PHC on IL-1β after 24 weeks of diabetes
5.1.72 Effect of PHC on Antioxidant (GSH) after 24 weeks
5.1.73 Effect of PHC on Catalase activity after 24 weeks of diabetes
5.1.74 High power photomicrographs showing blood vessel (Ret BV) from the retina of rat.
5.1.75 High Power photomicrograph of PAS stained section of renal parenchyma
5.1.76 High Power photomicrographs of pancreas of rat
5.1.77 Low power photomicrograph from section of liver
5.1.78 High power photomicrograph of cardiac muscle and coronary artery
5.1.79 High power photomicrograph of retina showing the pattern of staining for BAX

Results- Type 2 DR
5.2.1 Effect of MC on blood glucose in T-2 DR
5.2.2 Effect of MC %HbA1c
5.2.3 Photographs showing lenticular and retinal changes
Fluorescein angiogram of retina of study groups at the end of 24 weeks of treatment
5.2.4 Effect of MC on Angiogenic marker VEGF
5.2.5 Effect of MC on Angiogenic marker PKC
5.2.6 Effect of MC on TNF-α
5.2.7 Effect of MC on inflammatory parameter IL-1β
5.2.8 Effect of MC on Antioxidant enzyme GSH
5.2.9 Effect of MC on Catalase activity
High power photomicrograph of retina of rats (HE x 400) showing retinal blood vessel (Ret BV)
5.2.10 Effect of BD on Blood glucose in T-2 DR
5.2.11 Effect of BD %HbA1c
5.2.12 Photographs showing lenticular and retinal changes at the end of the study
5.2.13 Photographs showing Fluorescein angiography of Normal control
5.2.14 Effect of BD on Angiogenic marker VEGF
5.2.15 Effect of BD on Angiogenic marker PKC
5.2.16 Effect of BD on inflammatory marker TNF-α
5.2.17 Effect of BD on Angiogenic marker PKC
5.2.19 Effect of BD on inflammatory parameter IL-1β
5.2.20 Effect of BD on Antioxidant enzyme GSH
5.2.21 Effect of BD on Catalase activity
 High power photomicrographs (HE x 400) showing blood vessel (Ret BV) from the retina of study groups
5.2.22 Effect of EJ on Blood glucose
5.2.23 Effect of EJ on % HbA1c
 Photographs showing lenticular and retinal changes at the end of 24 weeks of diabetes
5.2.24 Effect of EJ on Antioxidant enzyme GSH
5.2.25 Effect of EJ on Catalase activity
5.2.26 High power photomicrographs (HE x 400) showing blood vessel (Ret BV) from the retina of study groups
5.2.27 Effect of EJ on Angiogenic marker VEGF
5.2.28 Effect of EJ on Angiogenic marker PKC
5.2.29 Effect of EJ on TNF-α
5.2.30 Effect of EJ on IL-1β
5.2.31 Effect of EJ on Antioxidant enzyme GSH
5.2.32 Effect of EJ on Catalase activity
 High power photomicrographs of retina (HE x 400) showing retinal blood vessels
5.2.33 Effect of TC on Blood glucose
5.2.34 Effect of TC on % HbA1c
 Photographs showing lenticular and retinal changes after 24 weeks of treatment
5.2.35 Photographs showing clear pattern in Fluorescein angiography
5.2.36 Fluorescein angiogram of retina of the study groups
5.2.37 Effect of TC on Angiogenic marker VEGF
5.2.38 Effect of TC on Angiogenic markers PKC
5.2.39 Effect of TC on Anti-inflammatory marker TNF-α
5.2.40 Effect of TC on Anti-inflammatory marker IL-1β
5.2.41 Effect of TC on Anti-inflammatory marker IL-1β
5.2.42 Effect of TC on glutathione (GSH) activity
5.2.43 Effect of TC on Catalase activity
 High power photomicrographs of retina (HE x 400) showing retinal blood vessel (Ret BV) in different groups
5.2.44 Effect of PHC on blood glucose
5.2.45 Effect of PHC on %HbA1c
5.2.46 Photographs showing lenticular and retinal changes at the end of 24 weeks of treatment
5.2.47 Photographs showing Fluorescein angiography
5.2.48 Effect of PHC on Angiogenic marker VEGF
5.2.49 Effect of PHC on Angiogenic marker PKC
5.2.50 Effect of PHC on Anti-inflammatory marker PKC
5.2.51 Effect of PHC on TNF-α
5.2.52 Effect of PHC on IL-1β
5.2.53 Effect of PHC on glutathione (GSH) activity
5.2.54 Effect of PHC on Catalase activity
 High power photomicrographs showing blood vessel (Ret BV) from the retina of rat
List of Tables

5.1 Effects of the oral administration of MC extract on the body weight and food and water consumption of STZ-induced type 1 diabetic rats
5.2 Effects of the oral administration of MC extract on cataract score and vessel diameter of STZ-induced type 1 diabetic rats
5.3 Effects of the oral administration of BD extract on the body weight and food and water consumption of STZ-induced type I diabetic rats
5.4 Effects of the oral administration of BD extract on cataract score and vessel diameter of STZ-induced type 1 diabetic rats
5.5 Effects of the oral administration of EJ extract on the body weight and food and water consumption of STZ-induced type 1 diabetic rats
5.6 Effects of the oral administration of EJ extract on cataract score and vessel diameter of STZ-induced type 1 diabetic rats
5.7 Effects of the oral administration of TC extract on the body weight and food and water consumption of STZ-induced type 1 diabetic rats
5.8 Effects of the oral administration of TC extract on cataract score and vessel diameter of STZ-induced type 1 diabetic rats
5.9 Effects of the oral administration of PHC extract on the body weight and food and water consumption of STZ-induced type 1 diabetic rats
5.10 Effects of the oral administration of PHC extract on cataract score and vessel diameter of STZ-induced type 1 diabetic rats
5.11 Effects of the oral administration of MC extract on the body weight and food and water consumption of STZ-induced type II diabetic rats
5.12 Effects of MC extract on cataract score and vessel diameter of STZ-induced type II diabetic rats
5.13 Effects of the oral administration of BD extract on the body weight and food and water consumption of STZ-induced type II diabetic rats
5.14 Effects of the oral administration of BD extract on cataract score and vessel diameter of STZ-induced type II diabetic rats
5.15 Effects of the oral administration of EJ extract on the body weight and food and water consumption of STZ-induced type II diabetic rats
5.16 Effects of the oral administration of EJ extract on cataract score and vessel diameter of STZ-induced type II diabetic rats
5.17 Effects of the oral administration of TC extract on the body weight and food and water consumption of STZ-induced type II diabetic rats
5.18 Effects of the oral administration of TC extract on cataract score and vessel diameter of STZ-induced type II diabetic rats
5.19 Effects of the oral administration of PHC extract on the body weight and food and water consumption of STZ-induced type II diabetic rats
5.20 Effects of the oral administration of PHC extract on cataract score and vessel diameter of STZ-induced type II diabetic rats
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>Angiotensin-Converting Enzyme</td>
</tr>
<tr>
<td>AGEs</td>
<td>Advanced Glycation End Products</td>
</tr>
<tr>
<td>ANOVA</td>
<td>One Way Analysis of Variance</td>
</tr>
<tr>
<td>AR</td>
<td>Aldose Reductase</td>
</tr>
<tr>
<td>BD</td>
<td>Boerhaavia diffusa</td>
</tr>
<tr>
<td>BDR</td>
<td>Background Diabetic Retinopathy</td>
</tr>
<tr>
<td>bFGF</td>
<td>Basic Fibroblast Growth Factor</td>
</tr>
<tr>
<td>CAT</td>
<td>Catalase</td>
</tr>
<tr>
<td>COX-2</td>
<td>Cyclo Oxygenase-2</td>
</tr>
<tr>
<td>DAG</td>
<td>Diacylglycerol</td>
</tr>
<tr>
<td>DC</td>
<td>Diabetic Control</td>
</tr>
<tr>
<td>DCCT</td>
<td>Diabetes Control and Complications Trial</td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes Mellitus</td>
</tr>
<tr>
<td>DR</td>
<td>Diabetic Retinopathy</td>
</tr>
<tr>
<td>EJ</td>
<td>Eugenia jambolana</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-Linked Immunosorbent Assay</td>
</tr>
<tr>
<td>eNOS</td>
<td>Endothelial Nitric Oxide Synthase</td>
</tr>
<tr>
<td>ETDRS</td>
<td>Early Treatment Diabetic Retinopathy Study</td>
</tr>
<tr>
<td>FA</td>
<td>Fluorescein Angiography</td>
</tr>
<tr>
<td>FBG</td>
<td>Fasting Blood Glucose</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione</td>
</tr>
<tr>
<td>HbA1c</td>
<td>Haemoglobin A1c (Glycated Haemoglobin)</td>
</tr>
<tr>
<td>HE</td>
<td>Hematoxylin and Eosin Stain</td>
</tr>
<tr>
<td>i.p.</td>
<td>Intraperitoneal</td>
</tr>
<tr>
<td>IAEC</td>
<td>Institutional Animals Ethics Committee</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>Intercellular Adhesion Molecule-1</td>
</tr>
<tr>
<td>IDDM</td>
<td>Insulin-Dependent Diabetes Mellitus</td>
</tr>
<tr>
<td>IGF-1</td>
<td>Insulin-Like Growth Factor-I</td>
</tr>
<tr>
<td>IL- β</td>
<td>Interleukin-1beta</td>
</tr>
<tr>
<td>iNOS</td>
<td>Inducible Nitric Oxide Synthase</td>
</tr>
<tr>
<td>IRMA</td>
<td>Intra-Retinal Microvascular Abnormalities</td>
</tr>
<tr>
<td>IVTA</td>
<td>Intravitreal Triamcinolone Acetonide</td>
</tr>
<tr>
<td>MA</td>
<td>Micro-Aneurysms</td>
</tr>
<tr>
<td>MC</td>
<td>Momordica charantia</td>
</tr>
<tr>
<td>MCP-1</td>
<td>Monocyte Chemoattractant Protein-1</td>
</tr>
<tr>
<td>MO</td>
<td>Macular Oedema</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide Adenine Dinucleotide Phosphate</td>
</tr>
<tr>
<td>NC</td>
<td>Normal Control</td>
</tr>
<tr>
<td>NF- κB</td>
<td>Nuclear Factor-κB</td>
</tr>
<tr>
<td>NIDDM</td>
<td>Non-Insulin-Dependent Diabetes Mellitus</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric Oxide</td>
</tr>
<tr>
<td>NPDR</td>
<td>Non Proliferative Diabetic Retinopathy</td>
</tr>
<tr>
<td>NVD</td>
<td>Neo-Vascularisation Disk</td>
</tr>
<tr>
<td>NVE</td>
<td>Neo-Vascularisation Elsewhere</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PAS</td>
<td>Periodic acid-Schiff Stain</td>
</tr>
<tr>
<td>PDR</td>
<td>Proliferate Diabetic Retinopathy</td>
</tr>
<tr>
<td>PDR</td>
<td>Proliferative Diabetic Retinopathy</td>
</tr>
<tr>
<td>PHC</td>
<td>Polyherbal combination</td>
</tr>
<tr>
<td>PKC</td>
<td>Protein Kinase- C</td>
</tr>
<tr>
<td>RAGE</td>
<td>Receptors for Advanced Glycation End Products</td>
</tr>
<tr>
<td>RAS</td>
<td>Renin Angiotensin System</td>
</tr>
<tr>
<td>Ret BV</td>
<td>Retinal Blood Vessel</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>RPE</td>
<td>Retinal Pigment Epithelium</td>
</tr>
<tr>
<td>RVP</td>
<td>Retinal Vascular Permeability</td>
</tr>
<tr>
<td>s.c.</td>
<td>Subcutaneous</td>
</tr>
<tr>
<td>SDR</td>
<td>Severe Diabetic Retinopathy</td>
</tr>
<tr>
<td>STZ</td>
<td>Streptozotocin</td>
</tr>
<tr>
<td>TC</td>
<td>Tinospora cordifolia</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Transforming Growth Factor-β</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumor Necrosis Factor Alpha</td>
</tr>
<tr>
<td>UKPDS</td>
<td>United Kingdom Prospective Diabetes Study</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular Endothelial Growth Factor</td>
</tr>
<tr>
<td>WESDR</td>
<td>Wisconsin epidemiological study of diabetic retinopathy</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>