LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Caption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Qualitative properties of conducting polymers in two extreme redox states</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>λ_{max} for UV-Visible and CD spectra with g-factor and band gap of chiral acid doped PANI</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Crystallinity percentage of chiral acid doped PANI</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>g-factor, band gap and conductivity of chiral polyaniline</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Coding of chiral PANIs reinforced into PAM hydrogels</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Conductivity and experimental collective diffusion coefficient for chiral PANIs reinforced PAM hydrogels</td>
</tr>
<tr>
<td>Table A1.1</td>
<td>20 values, interplanar spacing (d) values and percentage of crystallinity (R) of PANI (interfacial) and PANI (sonochemical)</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Caption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Formation of molecular orbitals</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>General structure of polyphthalocyanine</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Different methods of doping in conjugated polymers</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Doping mechanism of conjugated polymers demonstrated for chemical, electrochemical, photo- and interfacial doping methods</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>Defects in conjugated polymer chains: a “physico-chemical dictionary”</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>Polaron and bipolaron lattice (a) emeraldine salt in bipolaron form (b) dissociation of the bipolarons into two polarons (c) rearrangement of the charges into a ‘polaron lattice’</td>
</tr>
<tr>
<td>Figure 1.7</td>
<td>Spin-charge inversion of a conjugational defect</td>
</tr>
<tr>
<td>Figure 1.8</td>
<td>Protonation process leading to the formation of polaron and bipolaron in doped PANI (a) emeraldine salt in bipolar form (b) dissociation of the bipolarons into polarons (c) rearrangement of the charges into a “polaron lattice”</td>
</tr>
<tr>
<td>Figure 1.9</td>
<td>Propagation of polaron through a conjugated polymer chain by shifting of double bonds</td>
</tr>
<tr>
<td>Figure 1.10</td>
<td>Energy band diagrams and defect levels for polarons and bipolarons in undoped, lightly doped and heavily doped conducting polymers</td>
</tr>
<tr>
<td>Figure 1.11</td>
<td>(a) Hopping transport: a man crossing the river by jumping from stone to stone and (b) electronic level scheme of disordered PANI to demonstrate the hopping conductivity (CB = conduction band, VB valence band, FE = Fermi energy, W = energetic distance between states, R = local distance between states, $E_g =$ energy gap)</td>
</tr>
<tr>
<td>Figure 1.12</td>
<td>Electrodynamical character of PPy</td>
</tr>
<tr>
<td>Figure 1.13</td>
<td>Design of polymer photovoltaic device</td>
</tr>
<tr>
<td>Figure 1.14</td>
<td>Design of a polymer light emitting diode</td>
</tr>
<tr>
<td>Figure 1.15</td>
<td>Fabric strain gauge for determining knee flexion</td>
</tr>
<tr>
<td>Figure 1.16</td>
<td>Rehabilitation glove showing sensor strips on each finger</td>
</tr>
<tr>
<td>Figure 1.17</td>
<td>Pictorial view of corrosion resistance of steel coated with PANI primer and an epoxy</td>
</tr>
<tr>
<td>Figure 1.18</td>
<td>Amino acid-substituted PPy</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Schematic diagram of powder X-ray diffraction</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Digital photograph of powder X-ray diffractometer</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Digital photograph of thermo-gravimetric analyser</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Schematic of illustration of (a) sample assembly and (b) digital photograph of UV-Visible spectrophotometer</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Digital photograph of circular dichroism spectrometer</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Digital photograph of infrared spectrophotometer</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Absorption band corresponding to single, double and triple bond stretching</td>
</tr>
</tbody>
</table>
Figure 2.8 A simple layout of an FTIR instrument
Figure 2.9 Digital photograph of scanning electron microscope
Figure 2.10 A schematic layout of scanning electron microscope
Figure 2.11 Interactions between electrons and materials in TEM technique
Figure 2.12 An optical view for transmission electron microscope
Figure 2.13 Digital photograph of transmission electron microscope
Figure 2.14 Digital photograph of Four-Point collinear probe resistivity tester
Figure 2.15 Four-Point collinear probe resistivity method
Figure 3.1 Chemical structure of different chiral acids used for doping of PANI
Figure 3.2 Scheme for Doping of PANI emeraldine base with (+)-HCSA in DMF
Figure 3.3 UV-Visible spectra of chiral acid doped PANI in DMF
Figure 3.4 FTIR spectra of (a) PANI-EB (b) PANI-(+)-Mnd (c) PANI-(+)-Tr (d) PANI-(+)-CSA (e) PANI-Dibenzyol-D-Tr
Figure 3.5 CD spectra of (a) (+)-Tr and (b) (-)-Tr acid doped PANI in DMF
Figure 3.6 CD spectra of (a) (+)-HCSA and (b) (-)-HCSA acid doped PANI in DMF
Figure 3.7 CD spectra of (a) (+)-Mnd and (b) (-)-Mnd acid doped PANI in DMF
Figure 3.8 CD spectra of (a) (+)-O’O-Dibenzyol-Tr acid doped PANI in DMF
Figure 3.9 Powder X-ray diffraction pattern of (a) PANI-EB (b) (+)-HCSA doped PANI (c) O’O-Dibenzyol-D-Tr acid doped PANI
Figure 3.10 Le-Bail fit of the powder X-ray diffraction pattern of (+)-Tr acid doped PANI
Figure 3.11 Le-Bail fit of the powder X-ray diffraction pattern of (+)-Mnd acid doped PANI
Figure 3.12 SEM micrographs of (a) PANI and (b) PANI-Dibenzyol-D-Tr salt
Figure 4.1 Schematic illustration for (a) synthesis of Polyaniline (EB) and (b) Doping of Polyaniline (EB) by chiral amino acids
Figure 4.2 Chemical structures of chiral and achiral dopants
Figure 4.3 UV-Visible spectra of PANI (EB) and PANI(+-)-HCSA in DMF
Figure 4.4 UV-Visible spectra of PANI(+-)-HCSA in 30-120 mM of L-Arg along with enantiomeric PANI(+-)-HCSA and PANI (EB) in DMF. (L-Arg spectra is taken within 30 min of doping while L-Arg’ is taken after 24 h of doping)
Figure 4.5 UV-Visible spectra of PANI(+-)-HCSA in 30-120 mM of L-Pro along with enantiomeric PANI(+-)-HCSA and PANI (EB) in DMF
Figure 4.6 Comparison of UV-Visible spectra of PANI (EB), PANI(+-)-HCSA with 30mM of L-Arg and L-Gua within 30 min of doping along with L-Gua’ 30 mM after 24 hr of doping and PANI with L-Gua 30 mM without (+)-HCSA
Figure 4.7 FT-IR spectra of (a) PANI (EB) and (b) PANI(+-)-HCSA containing 30 mM L-Pro
Figure 4.8 CD spectra of PANI-(+-)CSA and PANI-(+-)CSA confirming the optical activity in opposite phases
Figure 4.9 Comparison of CD spectra of PANI(+-)-HCSA with 30mM of L-Arg and L-Gua within 30 min of doping along with L-Gua’ 30 mM after 24 hr of doping and PANI with L-Gua 30 mM without (+)-HCSA
Figure 4.10 Comparison of CD spectra of PANI(+)HCSA with 30mM of L-Arg and PANI(+)HCSA in 30-120 mM of L-Gua along with L-Gua 30 mM without (+)-HCSA

Figure 4.11 CD spectra of PANI(+)HCSA in 30-120 mM of L-Arg along with enantiomeric PANI(+)HCSA in DMF. (L-Arg spectra is taken within 30 min of doping while L-Arg’ is taken after 24 h of doping)

Figure 4.12 CD spectra of PANI(+)HCSA in 30-120 mM of L-Leu along with enantiomeric PANI(+)HCSA in DMF. (L-Leu spectra is taken within 30 min of doping while L-Leu’ is taken after 24 h of doping)

Figure 4.13 CD spectra of PANI(+)HCSA in 30-120 mM of L-Ile along with enantiomeric PANI(+)HCSA in DMF. (L-Ile spectra is taken within 30 min of doping while L-Ile’ is taken after 24 h of doping)

Figure 4.14 CD spectra of PANI(+)HCSA in 30-120 mM of L-Phe along with enantiomeric PANI(+)HCSA in DMF. (L-Phe spectra is taken within 30 min of doping while L-Phe’ is taken after 24 h of doping)

Figure 4.15 CD spectra of PANI(+)HCSA in 30-120 mM of L-Lys hydrochloride along with enantiomeric PANI(+)HCSA in DMF. (L-Lys spectra is taken within 30 min of doping while L-Lys’ is taken after 24 h of doping)

Figure 4.16 CD spectra of PANI(+)HCSA in 30-120 mM of L-Pro along with enantiomeric PANI(+)HCSA in DMF. (L-Pro spectra is taken within 30 min of doping while L-Pro’ is taken after 24 h of doping)

Figure 4.17 CD spectra for PANI(+)HCSA with 30 mM L-Ile in solid and solution phase along with enantiomeric PANI(+)HCSA in DMF

Figure 5.1 Powder X-ray diffractograms for (a) (L)-Ile.PANI0.1 (b) (L)-Ile.PANI0.05 (c) (L)-Leu.PANI0.1 (d) (L)-Leu.PANI0.05 (e) (L)-Phe.PANI0.1 (f) (L)-Phe.PANI0.05

Figure 5.2 SEM micrographs of chiral polyaniline at 0.1 M APS for (a) L-Ile.PANI (b) L-Ieu.PANI, and (c) L-Phe.PANI; and at 0.05 M APS for (d) L-Ile.PANI (e) L-leu.PANI, and (f) L-Phe.PANI. Insets show, SEM micrographs at higher magnification while B, C, D, and F represents their respective HRTEM micrographs

Figure 5.3 FT-IR spectra of (a) (L)-Ile.PANI (b) (L)-Leu.PANI (c) (L)-Phe.PANI Variation in pH values against reaction time at 0.05 M APS for (a) (L)-Ieu.PANI, (b) (L)-Ile.PANI (c) (L)-Phe.PANI, and 0.1 M APS for (d) (L)-Ile.PANI, (e) (L)-leu.PANI and (f) (L)-Phe.PANI

Figure 5.4 Scheme for release of proton during oxidation of PANI

Figure 5.5 Different products formed with variation in pH

Figure 5.6 UV-Visible and circular dichroism spectra of chiral polyaniline; (I) (L)-Ile.PANI, (II) (L)-Ieu.PANI, and (III) (L)-Phe.PANI; Solid line and dotted line for 0.05M and 0.1M APS, respectively

Figure 5.8 Tauc’s plot for band gap of different chiral PANI such as (a) (L)-Ile.PANI0.1 (b) (L)-Ile.PANI0.05 (c) (L)-Leu.PANI0.1 (d) (L)-Leu.PANI0.05 (e) (L)-Phe.PANI0.1 (f) (L)-Phe.PANI0.05
Figure 6.1 Digital photographs of prepared hydrogels (a) plane PAM (b) LS reinforced PAM (c) ISL reinforced PAM (d) PS reinforced PAM
Figure 6.2 Dehydration of PAM and chiral PANIs reinforced hydrogels vs time
Figure 6.3 Rehydration of PAM and chiral PANIs reinforced hydrogels vs time
Figure 6.4 Experimental collective diffusion coefficient for (a) PS-1 and (b) PS-2 reinforced PAM hydrogels from Li-Tanaka equation
Figure 6.5 Experimental collective diffusion coefficient for (a) LS-1 and (b) LS-2 reinforced PAM hydrogels from Li-Tanaka equation
Figure 6.6 Figure 6.6: Experimental collective diffusion coefficient for (a) ISL-1 and (b) ISL-2 reinforced PAM hydrogels from Li-Tanaka equation
Figure 6.7 FT-IR spectra chiral PANIs reinforced dry composite hydrogel
Figure 6.8 TGA thermograms of PAM and chiral PANIs reinforced hydrogels
Figure 6.9 Powder X-ray diffraction pattern of (a) plane PAM (b) ISL-1 (c) ISL-2 (d) LS-1 (e) LS-2 (f) PS-1 (g) PS-2 hydrogels
Figure 6.10 Scanning electron micrographs of PAM hydrogel
Figure 6.11 Scanning electron micrographs of (1a to 1c) LS-1/ PAM hydrogel and (2a to 2c) LS-2/PAM hydrogels
Figure 6.12 Scanning electron micrographs of (1a to 1c) PS-1/ PAM hydrogel and (2a to 2c) PS-2/PAM hydrogels
Figure 6.13 Scanning electron micrographs of (1a to 1b) ISL-1/ PAM hydrogel and (2a to 2c) ISL-2/PAM hydrogels
Figure A1.1 Stepwise schematic representation of interfacially synthesized PANI
Figure A1.2 Stepwise schematic representation of sonochemically synthesized PANI
Figure A1.3 UV-Visible spectra of PANI
Figure A1.4 FTIR spectra of PANI
Figure A1.5 X-ray diffraction spectra of (a) sonochemically and (b) interfacially synthesized PANI
Figure A1.6 SEM Micrographs of (a) sonochemically and (b) interfacially prepared PANI
LIST OF ABBREVIATIONS

a.u. Arbitrary unit
Å Angstrom
°C Degree Celsius
eV Electron Volt
FTIR Fourier Transform Infra Red
g Gram
h Hours
K Kelvin
μm Micrometer
μmol Micromoles
mg Milligram
ml Mililitre
mmol Millimoles
nm Nanometer
NIR Near Infra Red
PANI Polyaniline
PXRD Powder X-ray Diffraction
SEM Scanning Electron Microscopy
TEM Transmission Electron Microscopy
TGA Thermogravimetric Analysis
UV Ultra Violet
UV-Vis Ultraviolet-Visible
λ Wavelength
PPy Polypyrrole
PTh Polythiophene
PAM Polyacrylamide
CEP Conducting Electroactive Polymer
PA Polyacetylene
LB Leucoemeraldine Base
FE Fermi energy level
PS Pernigraniline Salt
ATFB Anilinium tetrafluoroborate
p-TSA p-toluenesulphonic acid
LED Light emitting diode
DBSA Dodecylbenzenesulphonic acid
ESD Electrostatic Discharge
CD Circular Dichroism
%T Percentage Transmittance