List of Figures

3.1 Common emitter amplifier circuit .. 22
3.2 Plots of output waveforms for input frequency 100 Hz 30
3.3 Plots of output waveforms for input frequency 200 Hz 31
3.4 Plots of Input and output waveforms for input frequency 200 Hz on PSPICE .. 32

4.1 Common emitter amplifier circuit .. 41
4.2 Plots for the estimated values of V_T. Initial value of V_T=0.018V. The solid line represents the proposed method (freq. variation), and the dotted line shows the time-domain least squares method. 47
4.3 Plots for the estimated values of V_T. Initial value of V_T=0.016 V. The solid line represents the proposed method (freq. variation), and the dotted line shows time-domain least squares method. 48
4.4 Plots for estimated values of V_T. Initial value of V_T=0.018 V. The solid line represents the proposed method (freq. variation based), fifteen different frequencies taken at a time, and the dotted line shows time-domain least squares method. 49

5.1 Common emitter amplifier circuit .. 61
5.2 Plots for the estimated value of V_T. Initial value of V_T=0.018V. The solid line represents the proposed method (freq.- domain), and the dotted line shows the time-domain least squares method. 70

6.1 Half-wave rectifier circuit ... 80
6.2 Plots for output waveforms when the circuit is modeled by the perturbation-based deterministic differential equations method 85
6.3 Plots for output waveforms when the circuit is modeled by the perturbation-based stochastic differential equations method 86
6.4 Plots for the noise voltage at the output and its pdf. 87
6.5 Plot of autocorrelation function of the noise component of output voltage ... 88
7.1 (a) NPN type transistor (b) PNP type Transistor 109
7.2 Ebers-Moll Static Model for an NPN type transistor 110
7.3 Regions of operation for a BJT ... 112
List of Tables

3.1 Percentage Distortion Error 32

4.1 SNR by time-domain least squares method, for different nos. of
time samples taken at a time. Initial value of $V_T = 0.0018$. 47

4.2 SNR by time-domain least squares method, for different nos. of
time samples taken at a time. Initial value of $V_T = 0.0016$. 48

4.3 SNR by the proposed method (frequency-domain least squares
method), ten different frequencies input taken at a time. 48

4.4 SNR by the proposed method (freq.-domain least squares method),
fifteen different frequencies input taken at a time. 48

5.1 SNR by time-domain least squares method, for different nos. of
time samples taken at a time. Initial value of $V_T = 0.0018$. 71

5.2 SNR by the proposed method (freq.-domain least squares method),
twelve different frequencies input taken at a time. 71