Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Absorption Coefficient</td>
</tr>
<tr>
<td>(a_{e,i})</td>
<td>The weighting factor depends on temperature</td>
</tr>
<tr>
<td>(\overline{a}_p)</td>
<td>Average of the momentum equation coefficients for the cells on either side of the face</td>
</tr>
<tr>
<td>(A')</td>
<td>Pre-exponential Factor in Arrhenius Formula</td>
</tr>
<tr>
<td>(A)</td>
<td>Surface Area</td>
</tr>
<tr>
<td>(b)</td>
<td>Temperature Exponent in Arrhenius Formula</td>
</tr>
<tr>
<td>(b_{e,j,j})</td>
<td>The emissivity gas temperature polynomial coefficients</td>
</tr>
<tr>
<td>(c_i)</td>
<td>Concentration of Species (i)</td>
</tr>
<tr>
<td>(C_p)</td>
<td>Specific Heat Capacity at Constant Pressure</td>
</tr>
<tr>
<td>(C_{1e}, C_{2e})</td>
<td>Constants of Standard (k-\varepsilon) Model</td>
</tr>
<tr>
<td>(C_i)</td>
<td>Vapor Concentration</td>
</tr>
<tr>
<td>(C_D)</td>
<td>Drag Coefficient</td>
</tr>
<tr>
<td>(C_{RF})</td>
<td>Char reactivity factor</td>
</tr>
<tr>
<td>(CV)</td>
<td>Control volume</td>
</tr>
<tr>
<td>(d_p)</td>
<td>Particle Diameter</td>
</tr>
<tr>
<td>(\Delta G_{f}^0(T))</td>
<td>Gibbs function</td>
</tr>
<tr>
<td>(D)</td>
<td>Diffusivity</td>
</tr>
<tr>
<td>(D_{i,m})</td>
<td>Mass Diffusion Coefficient</td>
</tr>
<tr>
<td>(D_f)</td>
<td>transport due to the diffusion through the face (f)</td>
</tr>
<tr>
<td>(D_{r,i})</td>
<td>Coefficient of thermal diffusion</td>
</tr>
<tr>
<td>(E)</td>
<td>Total Energy</td>
</tr>
<tr>
<td>(E_p)</td>
<td>Equivalent Particle Emission</td>
</tr>
</tbody>
</table>
E_a Activation energy
f_{pn} Scattering Factor of Particle n
F Lorentzian Broadening Factor
\vec{F} Force Vector
\vec{F}_D Drag Force
\phi_f A first-order upwind scheme indicating that the face value f
\vec{g} Gravitational Acceleration
G Incident Radiation
G_k Production of Turbulent Kinetic Energy
\Gamma_\phi The diffusion coefficient
h Species Enthalpy
\bar{h}_1 Sensible enthalpy change
h Convective Heat Transfer Coefficient
h_j(T_{ref}) Enthalpy of formation species j at reference temperature
h_{lg} Latent Heat of Evaporation
H Total Enthalpy
H_{lat,ref} Latent Heat at Reference Condition
H_v Net heat (lower heating values) of combustion of reactants
\Delta H_j^0 Enthalpy change of reaction at standard conditions
I Radiation Intensity
\vec{J}_i Diffusion Flux
J_f The mass flow is rate through the face f
k Turbulent Kinetic Energy
-\vec{k}_{eq}A\vec{\nabla}T Axial heat transports
K_{eq} Equilibrium constant
\[k_{\text{eff}} \] effective thermal conductivity

\[K_{eq} \] Equilibrium constant for reaction \(j \)

\(k_f, k_r \) Rate Constant for Forward / Reverse Reactions

\(k_{\infty} \) Thermal Conductivity of Continuous Phase

\(k_{\infty} \) high pressure limit

\(k_0 \) low pressure limit

\(L_e \) Lewis Number

\(\text{LHV} \) Lower Heating Value

\(m \) Mass

\(m' \) Mass Flow Rate

\(\dot{m}_{\text{char}} \) Inflow and outflow rates in each control volume

\(M_{w,i} \) Molecular Weight of Species \(i \)

\(n_{i,f}, n_{i,r} \) Reaction Orders of Forward / Reverse Reactions

\(n_{k,l} \) Molar flow rate of species \(k \)

\(N \) Number of Chemical Species

\(N_u \) Nusselt Number

\(\nabla \left(\rho \overline{v^2} \right) \) Fluctuation in turbulent flows

\(p \) Pressure

\(P_e \) The Peclet number

\(\sigma_k \) Prandtl Number

\(\sigma_\varepsilon \) Scattering coefficients

\(q_r \) substituted into the energy equation to account for heat sources (or sinks) due to radiation

\(Q_{\text{rad}} \) Radiative Heat Flux

\(\dot{Q}_{\text{loss}} \) Heat loss rate from \(I^{th} \) CV to the surrounding

\(\dot{Q}_{\text{reac}} \) Endothermic heat absorption rate
\(Q_{CH_4} \) Annual methane generation in the year of the calculation

R Universal Gas Constant

Re Reynolds Number

\(R_i \) Production of \(i^{th} \) species due to chemical reaction

\(Re_{ij} \) Reynolds Stresses

\(R_{tk} \) Net production rate of species \(k \) in the control volume

S Source Term

\(S_j \) Other source term

\(S_{ij} \) Mean Rate-of-Strain Tensor

\(S_{ct} \) Turbulent Schmidt Number

Sh Sherwood Number

\(S_{\phi} \) The source of \(\phi \) per unit volume

\(S_m \) the mass added to the continuous phase from the dispersed second phase

\(\Delta S_j^0 \) Entropy change of reaction at standard conditions

t Time

t\(_{\text{cross}}\) Particle Eddy Crossing Time

T Temperature

Tbp Boiling Temperature

Tvap Evaporation Temperature

Tw Gasifier Wall Temperature

\(\bar{\tau} \) Stress tensor

\(u_i \) Velocity Magnitude

\(u = \bar{u} + u'(t) \) Instantaneous gas velocity

\(u_p \) Particle Velocity

v Overall Velocity Vector

\(v'_i \) The stoichiometric coefficients for reactants
The stoichiometric coefficients for products

Volume

Volume of i^{th} control volume

Direction

Equilibrium mole fractions

Mole Fraction of Species i

Mass Fraction of Species j

Mass Fraction of Element i

Bell-Evans-Polanyi Factor

Delta Function

Emissivity of Particle n

The gravitational body force

Turbulent Dissipation Rate

Normally Distributed Random Number

Kolmogorov Length Scale

Radiation Temperature

Air-Fuel Ratio

Thermal Conductivity

Effective Thermal Conductivity

Turbulent Thermal Conductivity

Dynamic Viscosity

Turbulent Viscosity

Kinematic Viscosity

Length Fraction of Fine Structures

Density

Density of the Oxidizer Stream
\(\sigma \) Stefan-Boltzmann Constant
\(\sigma_p \) Equivalent Particle Scattering Coefficient
\(\sigma_s \) Scattering Coefficient
\(\tau \) Time Scale
\(\tau^* \) Time Scale of Fine Structures
\(\chi \) Scalar Dissipation Rate
\(\omega_k \) Angular Velocity
\(\Delta t \) Time Step
\(\phi \) Phase Function
\(\Omega' \) Solid Angle
\(\Omega_{ij} \) Mean Rate-of-Rotation Tensor
List of Figures

Figure 1.1 Schematic of a typical power production plant using MSW 6

Figure 2.1 Fixed bed gasifier configurations (a) Updraft (b) Downdraft 15

Figure 2.2 Fluidized bed gasifiers
 (a) Bubbling fluidized bed (b) Circulating fluidized bed 17

Figure 3.1 Waste disposal sites in Delhi 45

Figure 3.2 Gasifier system including cooling-cleaning train 61

Figure 3.3 Downdraft gasifier (capacity 10 kWe) 62

Figure 3.4 Wood chips 65

Figure 3.5 RDF briquettes 65

Figure 3.6 Gravimetric profiling of raw MSW at Gazipur landfill site
 for each season 67

Figure 3.7 Gravimetric profiling of fresh MSW at Okhala landfill site 68

Figure 3.8 Gravimetric profiling of fresh MSW at Bhalswa landfill site 69

Figure 3.9 Variation of moisture content in all seasons for each landfill site 71

Figure 3.10 Variation in bulk density of raw MSW at each landfill site 72

Figure 3.11 TGA thermogram of RDF in oxidant (air) environment 74

Figure 3.12 TG and DG thermogram of RDF sample
 in the reactive (air) environment 75

Figure 3.13 TG and DG thermogram of RDF sample in the inert environment 76
Figure 3.14 EDS analysis of residual ash from RDF
Plate 3.15 SEM image of residual ash from RDF
Figure 3.16 Enlarged SEM image of ash from RDF
Figure 3.17 Effect of power output on carbon monoxide (CO) emissions
Figure 3.18 Effect of power output on hydrocarbon (HC) emissions
Figure 3.19 Effect of power output on carbon dioxide (CO₂) emissions
Figure 3.20 Effect of power output on oxides of nitrogen (NOx) emissions
Figure 4.1 Sketch of a representative control volume for energy interaction
Figure 4.2 Comparison of predicted dry gas compositions against the experimental data (Jayah et al, 2003)
Figure 4.3 Effect of feedstock moisture content on syngas composition
Figure 4.4 Effect of feedstock moisture content on reaction temperature
Figure 4.5 Effect of feedstock moisture content on lower heating value
Figure 4.6 Effect of equivalence ratio on syngas composition
Figure 4.7 Effect of equivalence ratio on reaction temperature
Figure 4.8 Effect of equivalence ratio on lower heating value
Figure 4.9 Reduction zone grid
Figure 4.10 Contours of temperature (K)
Figure 4.11 Contours of H₂
Figure 4.12 Contours of CO
Figure 4.13 Contours of CH₄
Figure 4.14 Contours of incident radiation (W/m2) 140

Figure 4.15 LFG emission for case 1. 143

Figure 4.16 LFG emission for case 2 144

Figure 4.17 Methane emission for case 1 and 2 146

Figure 4.18 CO2 emission for case 1 and 2 146

Figure 4.19 NMOC emission for case 1 and 2 147

Figure 4.20 Saving of methane (equivalent co$_2$) 148

Figure 4.21 Overall co$_2$ emmission saved 148
List of Tables

Table 1.1 Assessment of thermochemical conversion systems using biomass/MSW/RDF 9

Table 2.1 Thermal capacity range of different gasifier designs 17

Table 2.3 Summary of CFD modeling attempts 42

Table 3.1 Zonal description of landfill sites 48

Table 3.2 Amount of MSW received (month-wise) at landfill sites (Delhi) from 2005-06 to 2010-11 50

Table 3.3 Amount of MSW received (month-wise) at Landfill sites Bhalswa, Ghazipur & Okhla Phase-1 during 2009-10 51

Table 3.4 Physical characterization of MSW 55

Table 3.5 Engine specifications 64

Table 3.6 MSW analysis of Gazipur landfill site 66

Table 3.7 Analysis of fresh MSW to be dumped at Okhala landfill 67

Table 3.8 Analysis of fresh MSW at Bhalswa landfill site for year 2009-10 68

Table 3.9 Physical classification of components and sub-components for all three landfills for two seasons (2009-10) 70

Table 3.10 Variation of moisture content (mass %) in all seasons for each landfill site 71

Table 3.11 Variation in bulk density of raw MSW at each landfill site 72

Table 3.12 Distribution of volatiles released during devolatilization process 73

Table 3.13 Proximate analysis (mass %) of air dried MSW and RDF 77

Table 3.14 Ultimate Analysis of air dried MSW (% mass) 78
Table 3.15 Ultimate analysis of RDF (mass %)
Table 3.16 Mineral analysis of Ash from RDF sample
Table 3.17 Ash deformation and fusion temperatures
Table 3.18 Measured engine emission with electric load
Table 3.19 Comparing polluting agents/effluents with CPCB norms
Table 4.1 Constants for k-ε models
Table 4.2 Model Input Parameters
Table 4.3 LFG emission from the Landfill sites of Delhi
Table 4.4 Emission of Methane from Landfill sites of Delhi
Table 4.5 NMOC Emission from Landfill sites of Delhi
Table 4.6 CO₂ emissions from Land Fill sides of Delhi
Table 4.7 Proximate and ultimate analysis of feedstock
Table 4.8 Comparing predicted and experimental values of gas composition (% vol)
Table 4.9 MSW Dumped at three landfill sites projected till 2020
Table 4.10 Saving of Emissions (Mg/Year) for case 2
Table 4.11 Saving of equivalent CO₂ emissions (Mg/Year) for case 2
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMG</td>
<td>Algebraic multi grid</td>
</tr>
<tr>
<td>BHTGS</td>
<td>Battelle high throughput gasification system</td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
</tr>
<tr>
<td>CFB</td>
<td>Circulating fluidized bed</td>
</tr>
<tr>
<td>CFD</td>
<td>Computational fluid dynamics</td>
</tr>
<tr>
<td>CGE</td>
<td>Cold gas efficiency</td>
</tr>
<tr>
<td>CPCB</td>
<td>Central pollution control board</td>
</tr>
<tr>
<td>CRF</td>
<td>Char reactivity factor</td>
</tr>
<tr>
<td>C$_{RF}$</td>
<td>Char reactivity factor</td>
</tr>
<tr>
<td>CV</td>
<td>Control volume</td>
</tr>
<tr>
<td>DPM</td>
<td>Discrete phase model</td>
</tr>
<tr>
<td>DRW</td>
<td>Discrete random walk</td>
</tr>
<tr>
<td>EDS</td>
<td>Energy dispersive X-ray spectrometry</td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental Impact Assessment</td>
</tr>
<tr>
<td>EDC</td>
<td>Eddy dissipation concept</td>
</tr>
<tr>
<td>EPI</td>
<td>Energy Products of Idaho</td>
</tr>
<tr>
<td>GHGs</td>
<td>Green house gases</td>
</tr>
<tr>
<td>HTR</td>
<td>High temperature recycling</td>
</tr>
<tr>
<td>HAPs</td>
<td>Hazardous air pollutants</td>
</tr>
<tr>
<td>IGCC</td>
<td>Integrated gasification combined cycle</td>
</tr>
<tr>
<td>IMD</td>
<td>India Meteorological Department</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental panel on climate change</td>
</tr>
<tr>
<td>ISAT</td>
<td>In-situ adaptive tabulation</td>
</tr>
<tr>
<td>LCI</td>
<td>Life-cycle inventory</td>
</tr>
<tr>
<td>LFG</td>
<td>Landfill Gas</td>
</tr>
<tr>
<td>MCD</td>
<td>Municipality Corporation Delhi</td>
</tr>
<tr>
<td>MEET</td>
<td>Multi-staged enthalpy extraction technology</td>
</tr>
<tr>
<td>Mg</td>
<td>Mega gram</td>
</tr>
<tr>
<td>MT</td>
<td>Metric ton</td>
</tr>
<tr>
<td>MTCI</td>
<td>Manufacturing and technology conversion international, Inc</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MSW</td>
<td>Munispality solid waste</td>
</tr>
<tr>
<td>NDMC</td>
<td>New Delhi Municipality Corporation</td>
</tr>
<tr>
<td>NEERI</td>
<td>National environmental engineering research institute Nagpur India</td>
</tr>
<tr>
<td>NMOCs</td>
<td>Non-methane organic compounds</td>
</tr>
<tr>
<td>PPMV</td>
<td>Parts per million by volume</td>
</tr>
<tr>
<td>PTFV</td>
<td>Potential tar formation volume</td>
</tr>
<tr>
<td>RCBC</td>
<td>Rotary cascading bed combustor</td>
</tr>
<tr>
<td>RDF</td>
<td>Refuse derived fuel</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermo gravimetric analysis</td>
</tr>
<tr>
<td>WSGGM</td>
<td>Weighted sum of gray gases model</td>
</tr>
<tr>
<td>WTE</td>
<td>Waste to energy</td>
</tr>
<tr>
<td>VOCs</td>
<td>Volatile organic compounds</td>
</tr>
</tbody>
</table>