TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS, ABBREVIATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>1.</td>
<td>GENERAL INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1. Parkinson’s disease</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1.1. Major symptoms of the Parkinson’s disease</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.1.2. Treatments of PD and ON/OFF fluctuations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.1.3. Deep brain stimulation</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.1.4. Diagnosis/assessment of PD</td>
<td>7</td>
</tr>
<tr>
<td>1.2.</td>
<td>OBJECTIVES OF THE STUDY</td>
<td>10</td>
</tr>
<tr>
<td>1.3.</td>
<td>OUTLINE OF THE THESIS</td>
<td>10</td>
</tr>
<tr>
<td>1.4.</td>
<td>LITERATURE REVIEW</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1.4.1. Definition and symptoms of PD</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1.4.2. Pathophysiology</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>1.4.3. Prevalence and incidence of PD</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>1.4.4. Age-related factors</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>1.4.5. Gender-related factors</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>1.4.6. Genetic factors</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>1.4.7. Medical history</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>1.4.8. Environmental factors</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>1.4.9. Clinical features of Parkinson’s disease</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>1.4.10. Diagnosis of Parkinson’s disease</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>1.4.11. Biomarkers</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>1.4.12. Assessment of Parkinson disease manifestations</td>
<td>57</td>
</tr>
</tbody>
</table>
1.4.13. Current trends in therapeutics 75
1.4.14. New therapeutic strategies 81

2. METALLOMOMIC ANALYSES OF PARKINSON’S DISEASE 90

2.1. INTRODUCTION 90

2.1.1. ICP-AES 91
2.1.2. ICP-MS 93

2.2. MATERIAL AND METHODS 97

2.2.1. Sample collection 97
2.2.2. Collection and storage of samples 98
2.2.3. ICP-AES and ICP-MS Instrumentation 99
2.2.4. Statistical analyses 100
2.2.5. Artificial neural network 101

2.3. RESULTS 102

2.3.1. Statistical analyses 104
2.3.2. Metallomic markers 104
2.3.3. Markers inter-relationship 106
2.3.4. Element linkage map 108
2.3.5. ANN model and its diagnostic performance 110

2.4. DISCUSSION 111

3. SPECTRAL DIFFERENTIATION IN PARKINSON’S DISEASE 116

3.1. INTRODUCTION 116

3.1.1. FTIR imaging 118
3.1.2. Biochemical fingerprints of FT-IR spectroscopy 118

3.2. MATERIALS AND METHODS 120

3.2.1. Clinical sample 120
3.2.2. Preparation of samples 121
3.2.3. FTIR data analysis 122
3.2.4. Statistical analyses 122
3.2.5. Artificial neural network detection 123

3.3. RESULTS 126
3.3.1. Identification of unique markers 133
3.3.3. Cluster analysis 134
3.3.4. ANN model and its diagnostic performance 135

3.4. DISCUSSION 136

4. METABOLIC PROFILING ON PARKINSON’S DISEASE 139

4.1. INTRODUCTION 139

4.2. MATERIALS AND METHODS 140
4.2.1. Clinical sample 140
4.2.2. Preparation of samples 141
4.2.3. Proton NMR spectrum 142
4.2.4. Metabolites determination 142
4.2.5. Statistical analyses 142
4.2.6. ANN for diagnosis 143
4.2.7. Protein interaction analysis 144
4.2.8. Gene expression analysis 144
4.2.9. Systems biological analyses 145
4.2.10. Collection of disease related genes 146
4.2.11. Enriched protein network 146
4.2.12. Statistical significance of network 147
4.2.13. Disease- disease interaction score 148
4.2.14. Disease interaction mapping 149
4.2.15. Common pathway network 149
4.2.16. Biomarkers identification 149
4.2.17. Significant enrichment biomarkers score 150
4.2.18. Biomarker scoring for diagnosis 150

4.3. RESULTS 151
4.3.1. Metabolite variations 152
4.3.2. Statistical analyses 153
4.3.3. ANN classification 156
4.3.4. Genetic aspects of pyruvate variation 158
4.3.5. Data collection for systems biology 160
4.3.6. Statistical significance of network 162
4.3.7. Network model 163
4.3.8. Biomarkers identification 168

4.4. DISCUSSION 169

5. MOLECULAR MODELING STUDY 178
5.1. INTRODUCTION 178
5.1.1. Quantitative structure activity relationship 179
5.1.2. Pharmacophore modeling 180
5.2. MATERIALS AND METHODS 181
5.2.1. Molecular modeling 181
5.2.2. Generation of descriptor 182
5.2.3. Validation of model 183
5.2.4. Physicochemical screening 183
5.2.5. Pharmacophore modeling 184
5.3. RESULTS 185
5.3.1. Prediction ability of QSAR models 188
5.3.2. ADMET properties 189
5.3.3. Pharmacophore model 190
5.4. DISCUSSION 193
6. SUMMARY AND CONTRIBUTION

6.1. Metallomics based diagnosis of PD 199
6.2. FTIR spectral based diagnosis of PD 200
6.3. Metabolite based diagnosis of PD 200
6.4. QSAR and pharmacophore model for PD treatment 201
6.5. Conclusions 202

REFERENCES 203

APPENDICES 265

LIST OF PUBLICATIONS 294

VITAE 295