List of Figures

2.1 Mean evolution of membrane potential v/s time \(\beta = 1s^{-1}, V_0 = 0.01V \) and \(\mu = 1Vs^{-1} \) .. 26
2.2 Graph of pdf v/s membrane potential \(\eta = 1s^{-1}, \beta = 1s^{-1}, V_0 = 0.01V, \mu = 1Vs^{-1} \) and \(\sigma_\xi = 1 \) .. 28
2.3 Time variation of Autocorrelation Function for model \(\beta = 10s^{-1}, \eta = 1s^{-1} \) and \(\sigma_\xi = 1 \) .. 32
2.4 Power spectral density for model \(\beta = 1s^{-1}, \eta = 1s^{-1} \) and \(\sigma_\xi = 1 \) .. 33
2.5 Variation of CV(t) for different \(\beta(\eta = 1s^{-1}, V_0 = 0.01V, \mu = 1Vs^{-1} \) and \(\sigma_\xi = 1) \) .. 34
2.6 Variation of CV(t) for different \(\eta(\beta = 1s^{-1}, V_0 = 0.01V, \mu = 1Vs^{-1} \) and \(\sigma_\xi = 1) \) .. 35
2.7 Frequency histogram obtained from simulations for model driven by noise \(\beta = 1s^{-1}, \eta = 1s^{-1}, V_0 = 0.01V, \mu = 1Vs^{-1}, V_{th} = 1V \) and \(\sigma_\xi = 1 \)) ... 36
2.8 Variation of CV v/s \(\eta \) for different value of \(\sigma(\beta = 1s^{-1}, V_0 = 0.01V, V_{th} = 1V, \mu = 1Vs^{-1} \) and \(\sigma_\xi = 1) \) .. 37
2.9 Variation of CV v/s \(\eta \) for ISI distribution \(\beta = 1s^{-1}, V_0 = 0.01V, V_{th} = 1Vs^{-1} \) and \(\sigma_\xi = 0.5 \) .. 38
2.10 Autocorrelation function of spike counts \(\beta = 4s^{-1}, \eta = 0.5s^{-1}, V_0 = 0.01V, V_{th} = 0.7V, \mu = 1Vs^{-1} \) and \(\sigma_\xi = 0.2 \) .. 39
2.11 Variation of distance between proposed and LIF models \(\beta = 1s^{-1}, V_0 = 0.01V, V_{th} = 1V, \mu = 1Vs^{-1} \) and \(\sigma_\xi = 0.2 \) .. 40
2.12 Convergence of the proposed model and LIF model for large η (β = 0.55s⁻¹, η = 90s⁻¹, τ⁻¹ = 0.55s⁻¹, V₀ = 0.01 V, μ = 0.5 Vs⁻¹, V₉ = 0.7 V and σ₇ = 0.4) 41

3.1 Classification of pdfs based on κ value 48
3.2 Comparison of proposed model and LIF model driven by both white and colored noise (β = 15⁻¹, η = 60s⁻¹, τ⁻¹ = 1s⁻¹, V₀ = 0.01 V, μ = 1Vs⁻¹, V₉ = 1 V, σ₇ = 1, ν = 10s⁻¹ and ²R = 1) 55
3.3 Graph of Variance v/s time (η = 1s⁻¹, β = 1s⁻¹, V₀ = 0.01 V, μ = 1Vs⁻¹, σ₀ = 1) 58
3.4 Time variation of Autocorrelation Function for model (β = 10s⁻¹, η = 1s⁻¹ and ²R = 1) 60
3.5 Graph of CV(t) v/s time with different ν (β = 1s⁻¹, η = 1s⁻¹, V₀ = 0.01 V, μ = 1Vs⁻¹ and σ₀ = 1) 62
3.6 Frequency histogram obtained from simulations for model driven by colored noise 63
3.7 Frequency histogram obtained form simulations for model driven by additive White and colored noise 64
3.8 Coefficient of variation with respect to ISI (β = 4s⁻¹, η = 0.5s⁻¹, V₀ = 0.01 V, V₉ = 0.7 V, μ = 1Vs⁻¹ and ²R = 0.2) 65
3.9 Characterization of proposed model (solid line) in case of white and/or colored noises with Pearson curves (dashed line) 67

4.1 Averaged ISI distribution for RRW model: λₑ and λᵢ are random variables with -(α = 20; λₑ = 12; λᵢ = 2; ²λₑ = 4; ²λᵢ = 0.05) 92
4.2 RRW model-TPD on threshold S (s = 10; ²s = 6; a = 2; λₑ = 12; λᵢ = 1) 93
4.3 Averaged ISI distribution when initial condition V₀ is random variable in IF model- (μ = 1; σ = 0.02; S = 0.2; V₀ = 0.1; ²V₀ = 0.05) 93
4.4 Averaged ISI distribution when threshold S is random variable in IF model- (μ = 1; σ = 0.02; S = 0.3; ²S = 0.2; V₀ = 0.01) 94
4.5 Averaged ISI distribution when drift μ is random variable in IF model:
\(\sigma = 0.02; \mu = 1; \sigma^2 = 0.2 \) .. 94

4.6 Averaged ISI distribution when initial condition V_0 is random variable: Three pt distribution-
\(\mu = 1; \sigma = 0.02; S = 0.4; \tilde{V}_0 = 0.1; \sigma^2_{\tilde{V}_0} = 0.05 \) 95

4.7 Maximizing entropy in IF model for different values of weights-
\(\tilde{S} = 10; \sigma^2_\tilde{S} = 6; a = 2; \lambda_E = 12; \lambda_I = 1; \) 95

4.8 Two point distribution of σ when $\mu \tau = S$ in LIF model-
\(\tilde{S} = 10; S = 6; a = 2; \lambda_E = 12; \lambda_I = 1; \) 96

4.9 Two point distribution of μ in generalized IF model when moments are known -
\(V_0 = 0.1; \eta = 1; \beta = 1; n\mu = 5; \sigma^2_{\mu} = 0.5; \sigma^2_2 = 0.2; t = 1 \) 96

5.1 Spiking Neuron .. 99

5.2 Comparison of CV in distributed delay model with that of LIF model 105

5.3 Comparison of output entropy in distributed delay model with that of LIF model 106

5.4 Comparison of mutual information in distributed delay model with that of LIF model 107

5.5 Maximum entropy obtained in distributed delay model and LIF model 107

5.6 For different values of η we compare the CV obtained in distributed delay model and LIF model 108

5.7 Comparing maximum entropy obtained in distributed delay model and LIF model 108

5.8 The output entropy achieved in distributed delay model and LIF model 109

5.9 Mutual information obtained in distributed delay model and LIF model 109

viii