Table of Contents

Table of Contents iv
List of Figures v
Acknowledgements ix
Abstract xi

1 Introduction 1
1.1 Background 1
1.2 Information theory and spike trains 2
1.3 Computation of Information in Single Spike 7
1.4 Encoding of signals in spike trains 9
1.5 Stochasticity and single neuronal system 11
1.6 Our work 11

2 Neuronal model with Exponential Distributed Delay: Analysis and Simulation study 18
2.1 Introduction 18
2.2 The Model with Distributed Delay 22
2.2.1 Exponential delay kernel 23
2.3 Analysis of the model 24
2.3.1 Autocorrelation function-ACF 30
2.3.2 Power Spectral Density 31
2.3.3 Coefficient of Variation 33
2.4 Numerical Simulations of FPT: ISI Distribution 34
2.4.1 Numerical simulation of Coefficient of variation 36
2.4.2 Study of JS Divergence for ISI distribution: LIF and the Proposed Model 38
2.5 Conclusion 39
3 Characterization of ISI distribution using Pearson family of distributions: Neuron model with distributed delay driven by colored noise

3.1 Introduction .. 42
3.2 Pearson System of Frequency curves 44
3.3 The Model with Distributed Delay 51
 3.3.1 Exponential delay kernel 53
 3.3.2 Model driven with additive white and colored noise 54
3.4 Analysis of the model 56
 3.4.1 Autocorrelation Function 59
 3.4.2 Coefficient of Variation 60
3.5 Numerical Simulations for FPT and its Characterization 61
 3.5.1 Numerical Simulations 61
3.6 Characterization using Pearson System of frequency curves 64
3.7 Conclusion ... 66

4 Bimodal and Multimodal ISI distribution in Integrate-and-Fire models with random parameters: Two Point Distribution Framework 68

4.1 Introduction .. 68
4.2 Integrate-and-Fire Models:Functional forms of ISI distributions 71
4.3 Point Distribution Formalism 78
4.4 Study of random parameters in ISI distribution using TPD 82
 4.4.1 Randomized Random Walk(RRW) Model 82
 4.4.2 Perfect Integrate-and-fire Model 84
 4.4.3 Leaky integrate-and-fire model 88
 4.4.4 Generalized IF model with distributed delay 89
4.5 Conclusion ... 90

5 Information Transmission in Spiking Neurons of Distributed Delay Neuronal model 97

5.1 Introduction .. 97
5.2 Computation of Mutual Information 98
5.3 Computation of Input Entropy H_m 101
5.4 Exponentially distributed delay model with Poisson jump process 102
5.5 Numerical Simulations of the delay model 104

References 110