List of Figures

**Figure 1.1:** The SNF2-like family of ATPases includes many proteins that are involved in chromatin remodelling 5

**Figure 1.2:** Grouping of SWI/SNF family of proteins 8

**Figure 1.3:** Mechanism of action of various SWI/SNF proteins 16

**Figure 1.4:** Consensus sequence of SF2 helicase subfamily 18

**Figure 1.5:** Conserved blocks contribute to distinctive structural features of Snf2 family proteins 20

**Figure 3.1:** Stem loop DNA used for DNA binding studies and ATPase assay 39

**Figure 3.2:** Purified fraction of ADAAD that was used for in this study 41

**Figure 3.3:** One form of Jablonski diagram showing the simple concept about fluorescence 42

**Figure 3.4:** Representative spectra showing fluorescence quenching in presence of ATP and ssDNA 44

**Figure 3.5:** Binding of ATP to ADAAD in absence of DNA 45

**Figure 3.6:** Binding of DNA to ADAAD in absence of ATP 46

**Figure 3.7:** ATPase assay and binding of ssDNA and dsDNA 47

**Figure 3.8:** Binding of ATP to ADAAD in presence of saturating concentration of DNA 50

**Figure 3.9:** Binding of DNA to ADAAD in presence of saturating concentration of ATP 51

**Figure 3.10:** ADAAD was titrated with increasing concentration of N-bromosuccinimide (NBS) in the absence and presence of ATP and DNA 53

**Figure 3.11:** Stern–Volmer plots 55

**Figure 3.12:** ATPase activity of ADAAD in presence of slDNA at 37°C and at 25°C 57

**Figure 3.13:** Model for interaction of ATP, slDNA, ssDNA and ATP hydrolysis 58

**Figure 3.14:** Theoretical models for interaction of ATP and DNA with ADAAD leading to ATP Hydrolysis 59

**Figure 3.15:** ATPase assay to study the effect of the order of addition of ATP and DNA on the activity of ADAAD 65

**Figure 3.16:** CD spectra of ADAAD with ATP and DNA 66
Figure 4.1: Comparison of sequences of the SWI/SNF proteins showing the conserved residues in motif I and its adjoining sites

Figure 4.2: Schematic representation of the deletion constructs MAD33 and MAD47

Figure 4.3: Cloning of MAD33

Figure 4.4: Schematic presentation of the steps involved in site directed mutagenesis

Figure 4.5: Purified fraction of MAD33 with GST-tag

Figure 4.6: Purification of MAD47

Figure 4.7: Binding of ATP the in absence of sI DNA to MAD33 and MAD47.

Figure 4.8: Binding of ATP in presence of saturated concentration of sI DNA (2μM) MAD33 and MAD47

Figure 4.9: Binding of sI DNA in absence of ATP to MAD33 and MAD47

Figure 4.10: Binding of sI DNA in presence of saturated concentration of ATP (20μM) A) MAD33 B) MAD47

Figure 4.11: ATPase assay for MAD47 and MAD33 in the presence of sI DNA

Figure 4.12: Mutation of the conserved residues in ADAAD

Figure 4.13: Purification of site-directed mutants

Figure 4.14: The site-directed mutant proteins were purified as described in Materials and Methods

Figure 4.15: K241A interaction with ATP and DNA

Figure 4.16: T242A interaction with ATP and DNA

Figure 4.17: ATPase assay of ADAAD and Q244A with increase concentration of sI DNA

Figure 4.18: Q244A interaction with ATP and DNA

Figure 4.19: Stern-Volmer plots for ADAAD, Q244A and D235A

Figure 4.20: D235A interaction with ATP and DNA

Figure 4.21: Interaction of D236A with ATP and DNA

Figure 5.1: Sequence alignment of the SWI/SNF protein using Clustal W

Figure 5.2: Purification of Q217N and Q217A

Figure 5.3: Q217A interaction with ATP and DNA
Figure 5.4: Structure of Glutamine and Asparagine  

Figure 5.5: ATPase assay of ADAAD and Q217N with increase concentration of sDNA  

Figure 5.6: Q217N interaction with ATP and DNA  

Figure 5.7: Stern-Volmer plots for ADAAD, Q217N and Q217A  

Figure 5.8: Stern-Volmer plots for ADAAD, Q217N and Q217A in the presence of saturated concentrations of ATP (20μM) and DNA (2μM) together  

Figure 5.9: MAD53 interaction with ATP and sDNA  

Figure 5.10: ADAAD interaction with ADP and Adenine  

Figure 5.11: ADAAD interaction with DNA in the presence of saturated concentration of Adenine (20μM)  

Figure 6.1: Proposed model for ATP and DNA binding and ATP hydrolysis by ADAAD