LIST OF THE FIGURES

CHAPTER-I

Figure-1.1. Schematic of excitation and emission of QDs with the typical energy band structure of semiconductor... 9

Figure-1.2. QDs as multifunctional research and diagnostic tools... 15

CHAPTER-II-A

Figure-2.1. TEM image of QD. The particle size was calculated with TEM and ranges from 3 to 5 nm.(Bar size is 20 nm in both images). Analysis was done at 200KV... 35

Figure-2.2. XRD analysis of QDs.. 36

Figure-2.3. Body weight of wistar rat following injection of QD, and HER2-QD. Mean and standard deviation of body weight of wistar rat injected intravenously with QD, anti-HER2ab-QD, and PBS control do not show statistically significant differences over a period of two month. Legend in the graph shows treatment group of rat.. 37

Figure-2.4. Coefficient of organs (liver, kidney, spleen, brain) of animal treated with QD, anti-HER2ab-QD. Coefficient of organs is the ratio of weight of the organs (gm) to animal weight (gm). Legend indicate the sample injected to animal body. No significant difference found at $\alpha=.05$ (95% CI). Statistical analysis was performed with a two-sample t-test, unknown and unequal variances, comparing each sample group to the related control group... 37

Figure-2.5. Hematology results from animals treated with QD, anti-HER2ab-QD (A-H). These results show mean and standard deviation of hemoglobin (A), White blood cells (B), Neutrophils (C), Lymphocytes (D), RBC count (E), mean corpuscular hemoglobin concentration (F), mean corpuscular volume (G), platelets (H). Error bars represent standard deviation. Statistical analysis was performed with a two-sample t-test, unknown and unequal variances, comparing each sample group to the related control group. * denote statistically significant results at
Figure-2.6. Biochemistry panel assays from Wistar rat treated with QD, anti-HER2ab-QD (A-E). Results illustrate mean and standard deviation of total protein, albumin, globulin (A) AST, ALT (B), ALP (C), GGTP (D), Bilirubin total, direct, indirect (E). Error bars represent standard deviation. Statistical analysis was performed with a two-sample t-test, unknown and unequal variances, comparing each sample group to the related control group. *denotes statistically significant result at $\alpha=0.05$.

Figure-2.7. DEPPD assay for ROS measurement from the rat blood serum treated with QDs and anti-HER2ab-QDs. (A) Real-time measurement of ten different concentrations of standard sample (50 to 500 units) and blank, (B) calibration curve by hydrogen peroxide standard sample. Slope was determined by [absorbance increase at 505 nm/min x 1000]. (C) Estimation of ROS from blood serum. ROS is expressed in unit. 1 unit is equal to 1mg/litter H_2O_2. ROS value is calculated from standard curve (B).

Figure-2.8. Concentration of cadmium in wistar rat liver, kidney and spleen treated with QDs, anti-HER2ab-QD and PBS. Result show mean and standard deviation of silver in liver and kidney powder. Bar indicates standard deviation.

Figure-2.9. Comet assay from blood sample of QD and anti-HER2ab-QDs treated wistar rat (A-D). A. control sample, B. Anti-HER2ab-QDs, and C. QDs treated animal group. D. Graphical representation of comet valves. X-axis indicate treatment group of animal. *denote the level of significance at $\alpha=.05$. Statistical analysis was performed with a two-sample t-test, unknown and unequal variances, comparing each sample group to the related control group. Comet analysis was done by Comet assay IV software.

Figure-2.10. Liver, kidney and spleen histology. Haematoxylin and eosin stains of liver, Kidney and spleen tissues of rat injected with PBS, QDs and anti-HER2ab-QDs. No severe damage or inflammation was found in cellular or tissue organ.

Figure-2.11. TEM images of liver and kidney of QDs treated rat. (A) Control
(liver), (B) animal treated with QD (liver), (C) animal treated with Anti-HER2ab-QDs, (D) Control kidney, (E) Kidney treated with QDs, (F) Kidney treated with Anti-HER2ab-QDs. Single staining was used for all TEM analysis to locate the silver nanoparticle deposition. 50 Figure-2.12. Cell cycle of the kidney treated with QD and anti-HER2ab-QDs. Flow cytometry study of the permeability to YO-PRO-1 and to PI. Typical histograms of Yo-Pro-1/PI in wistar rat liver and kidney cells. Animal injected with 100 μl of 1μM QDs and anti-HER2ab-QDs sample. (A-C) liver cells (control, Anti-HER2ab-QDs, and QD respectively) (D-F) Kidney cells (control, Anti-HER2ab-QDs, and QD respectively). 53 Figure-2.13. Cell viability study of HEK 293 in 12 hrs after treating with 50 nM and 25nM of anti-HER2ab-QDs. Error bars indicate the standard deviations of three independent experiments. 54 Figure-2.14. DCF-DA assay for ROS generation in HEK293 cells in 50 nM and 100 nM QD and anti-HER2ab-QD. 54 CHAPTER-II-B Figure-2.15. Schematic representation for the surface coating procedure with GSH. GSH coating is performed in a mixture of THF-water at 60 °C. Potassium t-butoxide (KOBU) is used for deprotonation of the carboxyl groups of GSH. 70 Figure-2.16. Fluorescence spectra and quantum yields of GSH-QDs that have emission peaks at 540 nm (green), 585 nm (orange), and 650 nm (red) in 10 mM PBS buffer. Inset shows a fluorescence image of three types of GSH-QDs in PBS buffer under irradiation of a UV light (365 nm). 72 Figure-2.17. Dynamic light scattering (DLS) histogram for GSH-QDs in PBS buffer: (a) GSH-QDs (540 nm) and (b) GSH-QDs (585 nm). 74 Figure-2.18. Fluorescence autocorrelation curves G(τ) for red-emitting GSH-QDs (650 nm) and standard fluorescent beads (20 nm in diameter) in 10 mM PBS. The autocorrelation curves are fitted by using a single-component diffusion model (dashed lines). 75 Figure-2.19. Size-exclusion HPLC chromatograph for standard proteins (a) and GSH-QDs using a TSKgel G4000SW column with 10 mM PBS buffer as
an eluent; 1) thyroglobulin (670 kDa), 2) ferreting (450 kDa), 3) bovine serum albumin (66 kDa), 4) transferring (80 kDa), 5) GSH-QD (650 nm), 6) GSH-QD (585 nm), and 7) GSH-QD (540 nm).

Figure-2.20. Schematic representation for the coupling reactions between GSH-QDs and anti-HER2 antibodies: a) EDC/sulfo-NHS, b) iminothiolane/sulfo-SMCC, and c) sulfo-SMCC coupling. Schematic representation for preparing the complex of antibody (IgG) and proteinA/PEG-QD.

Figure-2.21. Fluorescence autocorrelation curves for red-emitting GSH-QDs and HER2ab-QDs prepared by different coupling methods: (a) HER2ab-QD (sulfo-SMCC), (b) HER2ab-QD (EDC/sulfo-NHS), and (c) HER2ab-QD (iminothiolane/sulfo-SMCC). Inset shows hydrodynamic diameters of the QDs in 10 mM PBS buffer.

Figure-2.22. Fluorescence autocorrelation curves of ProteinA/PEG-QD (30 nM) in the absence and presence of anti-HER2 antibody in 10 mM PBS buffer. The concentration of the antibody is a) 60 nM, b) 120 nM, and c) 180 nM.

Figure-2.23. AFM images (left panel) and the histogram of aspect ratio (right panel) of a) red-emitting GSH-QDs, and HER2ab-QDs prepared by the coupling reaction using b) EDC/sulfo-NHS, c) iminothiolane/sulfo-SMCC, and d) sulfo-SMCC.

Figure-2.24. AFM images of a) GSH-QD (650 nm), b) ProteinA/PEG-QD (650 nm), and c) anti-HER2 antibody + ProteinA/PEG-QD (650 nm). The height profiles of each image are shown at the bottom.

Figure-2.25. Fluorescence images of KPL-4 cells in the presence (a-c) and absence (d) of green-emitting (540 nm) anti-HER2ab-QDs prepared by a) EDC/sulfo-NHS, b) iminothiolane/sulfo-SMCC, and c) sulfo-SMCC. QDs were excited at 405 nm and confocal images were taken with a 490-540 nm filter. Green spots in white circles are attributed to QDs aggregates. KPL-4 cells in the absence of green-emitting QDs show no cellular autofluorescence signals: differential interference contrast image (d-1) and fluorescence image (d-2).

Figure-2.26. Multicolor confocal images of KPL-4 cells after incubation of
anti-HER2ab-QDs (540 nm, 585 nm and 650 nm) prepared by SMCC coupling. PBS solutions of the anti-HER2ab-QDs (10 nM) were incubated with KLP-4 cells for 30 min at 37 °C. QDs were excited at 405nm. Confocal images were taken with a 490-540 nm filter for anti-HER2ab-QD (540 nm), a 575-620 nm filter for anti-HER2ab-QD (585 nm), and a 655-755 nm filter for anti-HER2ab-QD (650 nm). White scale bars represent 20um length.

Figure-2.27. Fluorescence images of KPL-4 cells after incubation of red-emitting QDs for 1.5 hrs, with their differential interference contrast images: a) SMCC-QDs, b) anti-GFP QDs and c) anti-HER2ab-QDs (650 nm) prepared by SMCC coupling with reduced anti-HER2 antibodies.

Figure-2.28. Differential interference contrast images (left: a, c, e, g) and confocal fluorescence images (right: b, d, f, h) of KPL-4 (A) and HeLa cells (B). The cells were incubated with 10 nM of ProteinA/PEG-QDs (650 nm) or 10 nM of anti-HER2 antibody conjugated ProteinA/PEGQDs (650 nm). Bar size in (A) and (B) is 20 µm and 30 µm, respectively.

Figure-2.29. Confocal fluorescence images of KPL-4 cells stained with CXCR4 conjugated ProteinA/PEG-QDs with 585nm emission peak (a) and anti-HER2 antibody conjugated proteinA/PEG-QDs with a 650 nm emission peak (b). Cellular image (c) shows a merge image of (a) and (b) with a differential interference contrast image of the cells. Cells were incubated with 5nM of CXCR4 conjugated ProteinA/PEG-QDs (585 nm) for 30 min at 37°C, and then cells were washed with PBS buffer and again incubated with 5nM of anti-HER2 antibody conjugated proteinA/PEG-QDs (650 nm) for 20 min. Cells were washed three times with PBS buffer before measurements of fluorescence images.

Figure-2.30. Time scanning of the KPL-4 cells treated with anti-HER2ab-QDs. Images show the sequential pattern of anti-HER2ab-QDs treated KPL-cells from 0 to 10 min. Image taken at 10 min, 25 sec, clearly show QDs internalization.

Figure-2.31. Anti-HER2 antibody/anti-HER-2-QDS competitive assay (A-D). A- KPL4 cells treated with 200nM anti-HER2 antibody prior to anti-
HER2ab-QDs treatment. B- KPL4 cells treated with only anti-HER2ab-QDs. No fluorescence signal from fig-a, because most of the HER2-receptor blocked by anti-HER2 antibody and very few anti-HER2ab-QDs found vacant sites for binding...

Figure-2.32. Epifluorescent/evanescent images of KPL4 and HeLa cell treated with 1nM anti-HER2ab-QDs. Single bright spot on the cell surface indicates the fluorescence signal from single molecule of anti-HER2ab-QDs. A- KPL4 cells and B-HeLa cell. Number of anti-HER2ab-QDs bind with KPL4 cell is very high compare to HaLa cell because of the presence of more number of HER2 receptor...

CHAPTER-III

Figure-3.1. TEM image of Silver nanoparticle. The particle size was calculated with TEM and ranges from 13±1-35±1nm. (Bar size is 20 nm in both images). Analysis was done at 200KV...

Figure-3.2. XRD analysis of Silver nanoparticle...

Figure-3.3. Body weight of wistar rat following injection of silver nanoparticle. Mean and standard deviation of body weight of wistar rat injected intravenously with various dose of silver nanoparticle (4mg/kg, 10mg/kg, 20mg/kg, 40mg/kg) or PBS control show statistically significant differences in 40mg/kg and 20mg/kg group over a period of 1 month. Statistical analysis was performed with a two-sample t-test, unknown and unequal variances, comparing each sample group to the related control group. *denotes statistically significant results at $\alpha=0.05$ and **denotes at $\alpha=0.01$...

Figure-3.4. Coefficient of organs (liver, kidney, spleen, brain). Coefficient of organs is the ratio of weight of the organs (gm) to animal weight (gm). Legend indicate the organs types. No significant difference found at $\alpha=.05$. Weight of the organ was calculated just after killing. Coefficient of the organs (organ weight (g)/animal weight (g)) was calculated for liver, kidney, spleen, and brain. No significant changes found in organ coefficient in any group...

Figure-3.5. Hematology results from animals treated with varying concentration of Ag-nanoparticle. a-h) These results show mean and
standard deviation of hemoglobin (a), red blood cells (b), hematocrit (c),
mean corpuscular hemoglobin (d), mean corpuscular hemoglobin
concentration (e), mean corpuscular volume (f), RDW-CV (g), platelets (h),
White blood cells (i), Lymphocytes (j), Neutrophils (k) and Eosinophils (l).
Error bars represent standard deviation. Statistical analysis was performed
with a two-sample t-test, unknown and unequal variances, comparing each
sample group to the related control group. *denotes statistically significant
results at $\alpha=0.05$, **denotes at $\alpha=0.01$.

Figure-3.6. Biochemistry panel assays from Wistar rat treated with varying
concentration of silver nanoparticle. a–h) Results illustrate mean and
standard deviation of 1) total protein, albumin, globulin (A), AST & ALT
(B), ALP (C), GGTP (D), Bilirubin (total, direct, indirect) (E). Error bars
represent standard deviation. Statistical analysis was performed with a two-
sample t-test, unknown and unequal variances, comparing each sample group
to the related control group. *denotes statistically significant results at
$\alpha=0.05$, **denotes at $\alpha=0.01$.

Figure-3.7. DEPPD assay for ROS measurement. ROS is expressed in unit.
1 unit is equal to 1mg/litter H_2O_2. ROS value is calculated from standard
curve.

Figure-3.8. Concentration of silver in wistar rat liver and kidney treated with
varying doases. Result show mean and standered deviation of silver in liver
and kidney powder. Bar indicate standard deviation.

Figure-3.9. Comet assay from blood sample of silver nanoparticle treated
wistar rat, A and B.40 mg/kg, 20mg/kg, 10mg/kg 4mg/kg and control images
of the comet from A1-A5 respectivly. Y-axis show tail moment, tail
migration and tail length, X-axis indicate treatment group of animal with
silver nanoparticle. Statistical analysis was performed with a two-sample t-
test, unknown and unequal variances, comparing each sample group to the
related control group. *denotes statistically significant results at $\alpha=0.05$,
**denotes at $\alpha=0.01$. Comet analysis was done by Comet assay IV
software.

Figure-3.10. Liver, kidney and spleer histology. a–c (1-5), Haematoxylin
and eosin stains of liver (a1–a5), Kidney (b1-b5) and spleen (c1-c5) tissues

xvii
of rat injected with PBS (a1, b1, c1), 40mg/kg Ag-nano (a2,b2,c2), 20mg/kg Ag-nano (a3, b3, c3), 10mg/kg Ag-nano (a4, b4, c4) and 4mg/kg Ag-nano (a5, b5, c5). No severe damage was found in cellular or tissue organ but some black rounded spot were found in high dose animal group (40mg/kg)..123-125

Figure-3.11. TEM images of liver and kidney of silver nanoparticle treated rat. (A) Animal treated with 4mg/kg Ag-nanoparticle (liver), (B) animal treated with 40 mg/Kg (liver), (C) animal treated with 4mg/kg Kidney, (D) Animal treated with 40 mg/kg kidney. Single headed arrow in the figure indicates presence of nanoparticle. Single staining with osmium tetraoxide was used for all TEM analysis to locate the silver nanoparticle deposition..127-128

Figure-3.12. The proposed mechanism of Ag-nanoparticle toxicity based on the data obtained in this study..132

LIST OF TABLE

Table-2.1. Fluorescence quantum yields, hydrodynamic diameters, and apparent molecular eights of GSH-QDs in 10 mM PBS buffer.........................