CHAPTER 6

CONCLUSION AND FUTURE SCOPE

Computing the critical path has been ample in the field of computer science from the past decade. So many algorithms and methods are available to solve these problems but still do not attain the best solution. Our thesis represents some of the optimal path problems and its solution such as job sequencing problem, unconstrained optimization problem and Linear programming problems. Thesis depicts the existing methods and a solution for a problem in existing methods through our proposed methodology. The numerical examples show that the proposed algorithms give better results when compared to the existing methods and techniques.

The multiobjective shortest path problem has been solved by modified Dijkstra’s algorithm, and the results show that it gives shortest path in terms of time and cost. The job sequencing problem has been solved by modified time sequencing method and finally, the linear programming problem can be solved by direct heuristic search algorithm. The experimental results and comparison shows that our proposed methodologies efficiently find the solution to critical path problems when compared to the existing researches. Here we are concentrating on only 3 problems in optimal path computing problems and it is not sure whether our algorithms are efficient for all the problems. In future, we will propose a novel algorithm which will work on all the problems. We will further extends this work to design a single algorithm for solving more than one critical path computing problems.