II. REVIEW OF LITERATURE

1. Chen et al., (2002)71 have reported about the synthesis and anti-inflammatory evaluation of 9-anilinoacridine and 9-phenoxyacridine derivatives.

2. Rastogi et al., (2002)72 have reported about the synthesis of antitumor AHMA linked to DNA minor groove binding agents and its biological evaluation.

3. Gamage et al., (1997)73 have reported about the Structure-activity relationships for the antileishmanial and antitypanosomal activities of 1'-substituted 9-anilinoacridines.

4. Jurlina et al., (1987)74 have reported about the redox chemistry of the 9-anilinoacridine class of antitumor agents.
5. **Atwell et al., (1986)**\(^{75}\) have reported about the synthesis of 3'-methylamino analogues of amsacrine with *in vivo* solid tumour activity.

\[
\begin{align*}
\text{Structure 1}
\end{align*}
\]

6. **Denny et al., (1983)**\(^{76}\) have reported about the anilino ring geometry of amsacrine and derivatives: relationship to DNA binding and antitumor activity.

\[
\begin{align*}
\text{Structure 2}
\end{align*}
\]

7. **Denny et al., (1983)**\(^{77}\) have reported synthesis of 3-substituted 5-carboxamido derivatives of amsacrine as potential antitumor agents.

\[
\begin{align*}
\text{Structure 3}
\end{align*}
\]

8. **Denny et al., (1977)**\(^{78}\) have reported about the synthesis of analogues of the 4'-(9-acridinylamino)methane sulfonanilides as potential antitumor agents.

\[
\begin{align*}
\text{Structure 4}
\end{align*}
\]
9. Atwell et al., (1977)79 has reported about the synthesis of latentiated congeners of the 4'-\(\text{9-acridinylamino}\)methane sulfonanilides as potential antitumor agents.

\[
\text{HN} \quad \text{N} \quad \text{SO}_2 \\
\quad \text{N} \quad \text{N} \quad \text{N} \\
\text{H} \\
\text{2N} \\
\text{N} \quad \text{N} \\
\text{H} \\
\text{2N}
\]

10. Kapuriya et al., (2008)80 have reported about the synthesis and biological activity of stable and potent antitumor agents, aniline nitrogen mustards linked to 9-anilinoacridines via a urea linkage.

\[
\begin{array}{c}
\text{N} \\
\text{N} \\
\text{HN} \\
\text{O} \\
\text{HN} \\
\text{HN} \\
\text{N} \quad \text{Cl} \\
\text{Cl} \\
\text{Cl} \\
\end{array}
\]

11. Chen et al., (2008)81 have reported about the synthesis and \textit{in vitro} cytotoxicity of 9-anilinoacridines bearing N-mustard residue on both anilino and acridine rings.

\[
\begin{array}{c}
\text{Cl} \\
\text{Cl} \\
\text{N} \\
\text{O} \\
\text{Cl} \\
\text{Cl} \\
\end{array}
\]

12. Plouvier et al., (1994)82 have reported about the synthesis and DNA binding antitumor activity of a thiazole-containing analog of netropsin linked to an acridine chromophore.

\[
\begin{array}{c}
\text{HN} \\
\text{N} \\
\text{O} \\
\text{N} \\
\text{S} \\
\text{HN} \\
\text{N} \\
\text{HN} \\
\text{S} \\
\end{array}
\]
13. **Dollinger et al., (2006)**\(^8^3\) have reported about the synthesis and biological investigations potent antiprion active acridine derivatives.

![Acridine Derivative](image1)

14. **Wakelin et al., (2003)**\(^8^4\) have reported about the synthesis of bisintercalating threading diacridines: relationships between DNA binding, cytotoxicity and cell cycle arrest.

![Bisintercalating Threading Diacridines](image2)

15. **Lee et al., (1996)**\(^8^5\) have reported about the effects of acridine substitution on the hypoxia-selective cytotoxicity and metabolic reduction of the bis-bioreductive agent nitracrine \(N\)-oxide.

![Nitracrine N-Oxide](image3)

16. **Cholody et al., (1995)**\(^8^6\) have reported about the synthesis of bisimidazo acridones and related compounds: new antineoplastic agents with high selectivity against colon tumours.

![Bisimidazo Acridones](image4)
17. **Kalirajan et al., (2007)**\(^{87}\) have reported about the synthesis of cyclized chalcone derivatives as antimicrobials.

![Cyclized Chalcone Derivative](image1)

18. **Tabarrini et al., (1999)**\(^{88}\) have reported about the synthesis of modified quinolones as antitumor acridones.

![Modified Quinolones](image2)

19. **Antonini et al., (1997)**\(^{89}\) have reported about the synthesis of 1-[(ω-aminoalkyl) amino] -4- [N- (ω-aminoalkyl) carbamoyl] -9- oxo - 9,10-dihydro acridines as intercalating cytotoxic agents.

![Acridine Derivatives](image3)

20. **Spicer et al., (1997)**\(^{90}\) have reported about the structure-activity relationships for acridine-substituted analogues of the mixed topoisomerase I/II inhibitor \(N-[2-(dimethylamino)ethyl]acridine-4-carboxamide\).

![Acridine-4-carboxamide](image4)
21. Kalirajan et al., (2009)91 have reported about the synthesis of some heterocyclic derivatives from chalcones.

22. Atwell et al., (1984)92 have reported about the synthesis and biological activity of dibasic 9-aminoacridine-4-carboxamides, a new class of antitumor agent.

23. Zahran et al., (2009)93 have reported about the synthesis and cellular cytotoxicity of new N-substituted indole-3-carbaldehyde and their indolylchalcones.

24. Bacherikov et al., (2005)94 has reported about the synthesis of potent antitumor 9-anilinoacridines bearing an alkylating N-mustard residue on the aniline ring.

25. Osama et al., (2003)95 have reported about the synthesis and antimicrobial activity of some new cyanopyridines, isoxazoles, pyrazoles and pyrimidines bearing sulphonamide moiety.
26. Murthy et al., (2006)96 have reported about the synthesis and characterization of a new chromano isoxazole.

\[\text{\includegraphics[width=0.5\textwidth]{image1.png}} \]

27. Panda et al., (2009)97 have reported about the synthesis, anti-inflammatory and antibacterial activity of novel indolyl-isoxazoles.

\[\text{\includegraphics[width=0.5\textwidth]{image2.png}} \]

28. Katritzky et al., (2001)98 have reported about the regioselective synthesis of polysubstituted pyrazoles and isoxazoles.

\[\text{\includegraphics[width=0.5\textwidth]{image3.png}} \]

29. Manna et al., (2005)99 has reported synthesis of some pyrazole derivatives and preliminary investigation of their affinity binding to P-glycoprotein.
30. Voskiene et al., (2007)100 has reported about the synthesis and structural characterization of products condensation 4-carboxy-1-(4-styrylcarbonylphenyl)-2-pyrrolidinones with hydrazines.

![Chemical structure](image1)

31. Bouabdallah et al., (2006)101 has reported about the synthesis of new 1,1'-di(4-nitro or 2-nitrophenyl)-5,5'-disubstituted-3,3'-bipyrazoles under microwave irradiation and classical heating conditions.

![Chemical structure](image2)

32. Chimenti et al., (2007)102 has reported about the synthesis of monoamine oxidase isoform-dependent tautomeric influence in the recognition of 3,5-diaryl pyrazole inhibitors.

![Chemical structure](image3)

33. Katritzky et al., (2001)103 has reported about the regioselective synthesis of polysubstituted pyrazoles and isoxazoles.

![Chemical structure](image4)
34. Suriya prakash et al., (2007)104 has reported about the microwave mediated combinatorial synthesis of 1-aryl-3,4-diaroylpyrazoles from 3-arylsydnones and 1,2-diarylacetylenes.

![Chemical structure](image1)

35. Brijesh kumar et al., (2003)105 has reported about the synthesis of substituted 1H-pyridazin-4-ones, 2-H-pyrazolo [4, 3-c] pyridazines, pyrazoles and isoxazole derivatives.

![Chemical structures](image2)

36. Gaikawad et al., (2000)106 has reported about the synthesis of newer coumarinoacetyl pyrazoles and their antimicrobial activities.

![Chemical structure](image3)

37. Gajare et al., (1997)107 has reported about the synthesis of some new pyrazoles and their antimicrobial activity.
38. Bijoy P. Mathew et al., (2010)108 have reported synthesis of some novel oxazine derivatives and their antimicrobial activity.

\[
\begin{array}{c}
\text{R} \quad \text{O} \quad \text{N} \\
\text{R}_1 \quad \text{R}_2 \quad \text{R}_3
\end{array}
\]

39. R.Kalirajan et al. (2011)109 have reported about the microwave assisted synthesis and evaluation of pyrazole derivatives of benzimidazoles.

\[
\begin{array}{c}
\text{N} \\
\text{H} \quad \text{N} \\
\text{R} \quad \text{Ar}
\end{array}
\]

40. Guodong Shen et al., (2006)110 have reported about the synthesis of benzoxazine and 1,3-oxazine derivatives.

\[
\begin{array}{c}
\text{N} \\
\text{O} \\
\text{Cl}
\end{array}
\]

41. Malleshappa N. Noolvi et al., (2011)111 have reported about the Synthesis and in vitro antitumor activity of substituted quinazoline and quinoxaline derivatives: Search for anticancer agent.

\[
\begin{array}{c}
\text{F} \\
\text{Cl} \quad \text{NH}
\end{array}
\]
42. Basappa et al., (2010)112 have reported about a small oxazine compound as an anti-tumor agent: A novel pyranoside mimetic that binds to VEGF, HB-EGF, and TNF-\(\alpha\).

43. Yukako Tabuchi et al., (2009)113 have reported about the Preparation of novel (Z)-4-ylidenebenzo[b]furo[3,2-d][1,3]oxazines and their biological activity.

44. Birsen Tozkoparan et al., (2002)114 have reported about the synthesis of some 1,2,4-triazolo[3,2-b]-1,3-thiazine-7-ones with potential analgesic and anti-inflammatory activities.

45. Vishnu K. Tandon et al., (2006)115 have reported, Naphtho[2,3-b][1,4]-thiazine-5,10-diones and 3-substituted-1,4-dioxo-1,4-dihydronaphthalen-2-yl-thioalkanoate derivatives: Synthesis and biological evaluation as potential antibacterial and antifungal agents.
46. **Maloy Kumar Parai et al., (2009)**\(^{116}\) have reported, A convenient synthesis of chiral amino acid derived 3,4-dihydro-2H-benzo[b][1,4]thiazines and antibiotic levofloxacin.

![Image](https://via.placeholder.com/150)

47. **Sethuraman Indumathi et al., (2009)**\(^{117}\) have reported, L-Proline-catalysed facile green protocol for the synthesis and antimycobacterial evaluation of [1,4]-thiazines.

![Image](https://via.placeholder.com/150)

48. **V Ambrogi et al., (1990)**\(^{118}\) have reported, Synthesis, antibacterial and antifungal activities of several new benzo- naphtho- and quinolino-1,4-thiazine and 1,5-thiazepine derivatives.

![Image](https://via.placeholder.com/150)

49. **Mamoru Koketsua et al., (2002)**\(^{119}\) have reported, Synthesis of 1,3-thiazine derivatives and their evaluation as potential antimycobacterial agents.

![Image](https://via.placeholder.com/150)

50. **W. Malinka et al., (2002)**\(^{120}\) have reported, Preparation of novel derivatives of pyridothiazine-1,1-dioxide and their CNS and antioxidant properties.