LIST OF CONTENTS

Abstract .. i - vi
Acknowledgements vii-viii
List of Contents ix-xi
List of Illustrations xii-xv
List of Tables xvi

1. INTRODUCTION

1.1 Energetic Particles in the Near-Earth-Space 4
 1.1.1 Galactic Cosmic Rays 4
 1.1.2 Solar Energetic Particles 7
 1.1.3 Anomalous Cosmic Rays 13
 1.1.4 Solar Wind 21
 1.1.5 Magnetospheric Particles 23
1.2 Ionization States of Energetic Particles in the
 Near-Earth-Space 26
 1.2.1 Ionization States of Solar Energetic
 Particles and Solar Wind 27
 1.2.2 Ionization States of Geomagnetically
 Trapped Particles 31
 1.2.3 Ionization States of Galactic Cosmic Rays
 .. 33
 1.2.4 Ionization States of the Anomalous Cosmic Rays
 .. 35
1.3 The "Anuradha" Cosmic Ray Experiment 41
1.4 Scope of the Present Thesis 42

2. EXPERIMENTAL APPROACH AND INSTRUMENT DESCRIPTION.

2.1 Measurement of the Ionization States of Low Energy
 Charged Particles 45
2.2 Geomagnetic Field as a Rigidity Filter 46
2.3 The Nuclear Track Method 50
2.3.1 Track Formation Mechanism 51
2.3.2 Chemical Processing of Latent Tracks 53
2.3.3 Track Geometry 56
2.3.4 Particle Identification 60
2.4 The Spacelab-3 Anuradha Experiment 63
2.5 Experimental Approach 66
2.6 Instrumentation 70
2.7 Flight Performance 72
2.8 Post-flight Analysis Procedure 72

3. DATA ACQUISITION AND ANALYSIS PROCEDURES.

3.1 Detection and Scanning Procedures 75
3.1.1 Scanning of the "Top" Detector Sheets 76
3.1.2 Scanning of the Lower Sheets in the Bottom Stack 77
3.2 Calibration of the CR-39 Detector 79
3.3 Determination of the Arrival Time of Individual Events 83
3.3.1 Scanning of Tracks in the Detector Sheets 1-0 and 1-1 83
3.4 Matching of Tracks 85
3.5 Tolerance Limits on the Parameters used for Identifying Matched Pairs of Track Segments 86
3.6 Arrival Direction and Location of Events Recorded 90

4. GEOMAGNETIC CUT-OFF AND TRANSMISSION FACTOR

4.1 Geomagnetic Transmission Factor 93
4.2 Determination of Low Energy (50-250 MeV/n) GCR Oxygen Flux and Test of the Geomagnetic Transmission Factor 97
4.3 Geomagnetic Cutoff Rigidities for Individual Particles 108
5. RESULTS AND DISCUSSION.

Part-I: ANOMALOUS COSMIC RAYS

5.1 Ionization States of the Anomalous Cosmic Rays 113
5.2 Spatial and Temporal distribution of the ACR Events 119
5.3 Possible Uncertainties in the Estimated Ionization States 119
5.4 Source and Origin of Anomalous Cosmic Rays 125

Part-II: LOW ENERGY (20-125 MeV/n) GALACTIC COSMIC RAYS

5.5 Ionization States of Galactic Cosmic Rays 127
5.6 Spatial and Temporal Distributions of the Partially Ionized Events 137
5.7 Possible Uncertainties in the Estimated Ionization States 141
5.8 Possible Source for the Partially Ionized Heavy Ions 143

6. CONCLUSIONS

6.1 Summary of Results and Conclusions 152
6.2 Suggestions for Improvement and Scope for Further Studies 156

References 160
List of Publications 174
LIST OF ILLUSTRATIONS

Fig.1-1	Energy spectra for different components of energetic charged particles measured at 1 AU	...	3
Fig.1-2	Energy spectra of galactic H, He, C and Fe ions measured at 1 AU	...	5
Fig.1-3	Abundances of various elements in the solar corona, photosphere and in flare events	...	11
Fig.1-4	Proton spectra for nine different solar flare events measured over the time period 1960 to 1972	...	12
Fig.1-5	Quiet-time energy spectra for H, He, C, N and O measured at 1 AU	...	14
Fig.1-6	Temporal variation of ACR oxygen ion flux at 1 AU along with the Mt. Washington neutron monitor data	...	17
Fig.1-7	(a) Heliographic latitude versus heliocentric distance for the spacecrafts IMP-8, Voyager-2, Pioneer-11, Voyager-1 and Pioneer-10. (b) Flux of ACR oxygen ion versus heliocentric distance	...	18
Fig.1-8	(a) Latitudinal gradient of ACR oxygen ions. (b) Time-shifted and time averaged neutral sheet tilt angle versus time	...	19
Fig.1-9	The measured and CRAND based energy distribution for trapped proton	...	24
Fig.1-10	The solar wind E/Q spectra illustrating charge states for different elements	...	30
Fig.1-11	The differential energy spectra of H, He and heavy ions observed in the earth’s magnetosheath and magnetotail	...	32
Fig.1-12 The Deep River neutron monitor counting rate and quiet time ACR oxygen ion flux 37

Fig.1-13 The H, He and O energy spectra measured by Pioneer-10 and Voyager-2 spacecrafts for selected time periods 39

Fig.1-14 Demodulated local interstellar spectra for anomalous H, He and O 40

Fig.2-1 A schematic diagram illustrating the entry of a charge particle in earth’s magnetosphere 48

Fig.2-2 Side view of an etched track 55

Fig.2-3 The geometry of an etched track showing different parameters 57

Fig.2-4 Two different views of various types of etched tracks 58

Fig.2-5 Schematic of Tracks, formed in successive sheets of plastic detector by a stopping ion 62

Fig.2-6 Energy vs. Restricted Energy Loss rate (REL) of oxygen and iron ions in CR-39 detector 62

Fig.2-7 A photomicrograph of tracks formed by an iron ion in CR-39 plastic detector flown in the present experiment 64

Fig.2-8 The Spacelab-3 Anuradha cosmic ray instrument 65

Fig.2-9 Field of view of Anuradha (IONS) in Spacelab-3 experiment support structure 67

Fig.2-10 A schematic diagram for the procedure of determining the arrival time of a particle incident on the Anuradha detector module 69

xiii
Fig.2-11 A three dimensional schematic view of the different parts in the Anuradha instrument 71

Fig.3-1 The calibration curve of Restricted Energy Loss (REL) vs. V_T/V_G (track etch rate/ bulk etch rate) 81

Fig.3-2 Residual Range vs. V_T/V_G for various ions for the detector used in the Anuradha experiment 82

Fig.3-3 The distribution of the deviations from the expected values in the different measured track parameters for the matched pair of tracks due to stationary state events 88

Fig.4-1 The Spacelab-3 orbit showing time spent by the spacecraft at different latitudes 96

Fig.4-2 A sketch showing a typical Spacelab-3 orbit and and allowed zones of effective exposure factor 98

Fig.4-3 Fractional exposure time plotted as a function of effective cutoff rigidity for the Spacelab-3 orbit 99

Fig.4-4 The interplanetary GCR oxygen ion fluxes for the epoch 1985 as obtained from Anuradha experiment alongwith those inferred from interplanetary helium fluxes measured by ISSE-3 104

Fig.4-5 The interplanetary oxygen fluxes measured in the Anuradha experiment and interstellar oxygen spectrum are shown along with a fit to our data derived from interstellar oxygen spectrum for ϕ (modulation parameter) =320 MeV/n 107

Fig.4-6 Typical penumbra structure in calculated (deduced) cutoff rigidities for two events detected in the present experiment 112

Fig.5-1 The distribution of local arrival time for anomalous cosmic ray events 121
Fig.5-2 Geographical arrival locations of anomalous cosmic ray events 122

Fig.5-3 The three hourly k_p indices during the period of our experiment 123

Fig.5-4 The geographic arrival locations of all heavy ions ($Z >10$) 138

Fig.5-5 The distribution of local arrival time, a) for all heavy ions, and, b) for partially ionized events 139

Fig.5-6 The distribution of arrival locations in geomagnetic latitude for all partially ionized events 140

Fig.5-7 The cutoff rigidities for all partially ionized low energy heavy ion events alongwith their penumbra structure 142

Fig.5-8 Fractions of a beam of Fe ions in interstellar medium and their charge states as a function of energy 144

Fig.5-9 The interplanetary helium fluxes measured at 1 AU during the period of our experiment 146
LIST OF TABLES

Table-1.1 : Elemental abundance of ACR, GCR and SEP 15
Table-1.2 : Isotopic composition in anomalous cosmic rays 20
Table-1.3 : Average characteristics of the solar wind 22
Table-1.4 : Ionization states of solar energetic particles 29
Table-1.5 : Cut-off energy for GCR particles at a specific geomagnetic latitude 34
Table-1.6 : Number of GCR particles detected at a specific geomagnetic latitude 34
Table-4.1 : Spacelab-3 orbit-averaged oxygen ion fluxes 102
Table-5.1 : Details of arrival information for all time-annotated ACR events 115
Table-5.2 : Ionization states and other relevant parameters for all time annotated ACR events 117
Table-5.3 : Details of arrival information for all time-annotated GCR events 130
Table-5.4 : Ionization states and other relevant parameters for all time annotated GCR events 133
Table-5.5 : Distribution of partially and fully ionized GCR events detected in Anuradha experiment 136