List of Figures

1.1 Schematic view of a limiter configuration 3
1.2 Schematic view of a single-null poloidal divertor configuration 4

2.1 Schematic diagram of the one-dimensional simulation model. MP denotes the midplane, X is the X-point, and DP is the divertor plate. 22

2.2 Plots of plasma parameters along the field line. Here, a detached case is shown. Dotted vertical lines represent the X-point location. Here, $Q_{ax} = Q_{ax} = 1.3 \text{ MW m}^{-3}$, $S_{ax} = 3.7 \times 10^{22} \text{ m}^{-3} \text{s}^{-1}$, $n_{by} = 1 \times 10^{16} \text{ cm}^{-3}$, $n_{n(xa)} = 5 \times 10^{13} \text{ cm}^{-3}$, $\xi_{i} = 0.045$. 23

2.3 The parallel particle flux, total pressure, and total heat flux profiles in a detached case. The parameters are same as in Figure 2.2. 25

2.4 Parallel variation of charge exchange and ionization rates, for same set of parameters as in Figure 2.2. Dotted line represents charge exchange, while solid line denotes ionization. 26

2.5 Plots of plasma parameters along the field line. Here, an attached case is shown. In this case we simply increase the perpendicular heat source to $Q_{ax} = Q_{ax} = 2.44 \text{ MW m}^{-3}$, with rest of the values as in Figure 2.2. 27

2.6 The parallel particle flux, total pressure, and total heat flux profiles in an attached case for same parameters as in Figure 2.5. 27

2.7 Variation of ion and electron midplane temperatures, midplane and target densities, and the front location (x_f) as a function of the ratio of perpendicular heat to particle sources (Q_{ax}/S_{ax}). 28

2.8 Figure showing the radiation loss (P_{rad}) as a function of parallel distance (x), for various values of Q_{ax}, keeping other values fixed as in Figure 2.2. Here, a, b, c, and d represent Q_{ax} equal to 2.6 MW/m3, 3.2 MW/m3, 4.2 MW/m3, and 4.88 MW/m3, respectively. 29

2.9 Comparison of parallel velocity in attached and detached regimes. 30

2.10 Plots showing the comparison between the parallel forces acting on the impurity v_{ax}, friction force and ion temperature gradient force, in detached and attached cases, with two different values of impurity ion velocity v_{ax}. 31
2.11 Analytical and numerical profiles of electron temperature, density, and velocity. Solid line denotes numerical solution, while broken line represents the analytical solution. The parameters are, $Q_{\perp} = 1.3 \text{ MW m}^{-3}$, $S_{\perp} = 5.2 \times 10^{22} \text{ m}^{-3} \text{ s}^{-1}$, $\kappa_0 = 2380 \text{ W m}^{-1} \text{ eV}^{-1/2}$, $T_L = 10 \text{ eV}$, $T_e = 3 \text{ eV}$, $T_r = 2 \text{ eV}$, $T_d = 1.6 \text{ eV}$, $\nu_x = 2.5 \times 10^4 \text{ s}^{-1}$, and $R = 1 \times 10^{23} \text{ m}^{-3} \text{ s}^{-1}$. 36

2.12 Plots showing the effect of higher ion-neutral collision frequency ν_x in the analytical solution. This graph has $\nu_x = 5 \times 10^4 \text{ s}^{-1}$, with rest of the parameters same as in Figure 2.11. The solid and broken lines represent numerical and analytical solutions, respectively. 37

2.13 Plots showing the effect of higher perpendicular heat source $Q_{\perp e}$ on the analytical solution. In this case $Q_{\perp e} = 2.3 \text{ MW m}^{-3}$, and keeping other parameters same as in Figure 2.11. Here also for comparison sake, the numerical solution is plotted as a solid line, while the analytical solution is displayed by the broken lines. 38

3.1 Normalized growth rate $\hat{\gamma}$ vs L_0/L_e for $\tau = 10$ and $k_{\gamma} \rho_e = 0.9$. The curves 1, 2, and 3 correspond to $|\phi_0| = 0, 0.1$, and 0.2, respectively. 55

3.2 The imaginary vs real part of normalized MARFE frequency for $\tau = 10$, $k_{\gamma} \rho_e = 0.9$, and different $|\phi_0|$. 56

3.3 Normalized growth rate $\hat{\gamma}$ vs L_0/L_e for $\tau = 10$, $|\phi_0| = 0.2$, and different $k_{\gamma} \rho_e$. 57

3.4 The imaginary vs real part of normalized MARFE frequency for $\tau = 10$, $|\phi_0| = 0.2$, and different $k_{\gamma} \rho_e$. 57

4.1 Normalized frequency $\hat{\Omega}$ vs L_0/L_e. The broken lines correspond to $|\phi_k| = 0$, while the solid lines denote $|\phi_k| = 0.2$, respectively. 70

5.1 Plots showing the effect of β on the normalized frequency $\hat{\omega}$. The solid and broken lines represent solutions of the nonlocal and local dispersion relations, respectively. Here (a)-(d) correspond to the acoustic mode, and (e)-(f) denote the drift-radiative mode, respectively. 86

5.2 Plots showing the effect of β on the normalized frequency $\hat{\omega}$. The solid and broken lines represent solutions of the nonlocal and local dispersion relations, respectively. Here (a)-(d) correspond to the Alfvén condensation mode. 86