List of Figures

Figure 2.1 Map of the study area .. 41
Figure 2.2 Ellipsoidal burrow showing length (a) and width (b) .. 42
Figure 2.3 An illustrative example of the survey (December 13, 2004) showing
distribution of burrows. The circle represents the exact location of the burrows
and their area. The method of distance calculation is shown in the right side
of the figure .. 43
Figure 2.4 An illustrative example of the survey (September 14, 2003) showing
distribution of burrows ... 44
Figure 2.5 An illustrative example of the survey (March 11, 2003) showing distribution of
burrows ... 45
Figure 2.6 An illustrative example of the survey (January 26, 2003) showing distribution
of burrows ... 46
Figure 2.7 An illustrative example of the survey (September 15, 2004) showing
distribution of burrows ... 47
Figure 2.8 An illustrative example of the survey (February 20, 2004) showing distribution
of burrows ... 48
Figure 2.9 An illustrative example of the survey (August 11, 2004) showing distribution of
burrows ... 49
Figure 2.10 Classification of burrow distribution: (a) Clustered; (b) Random; (c) Regular.
The number shows the Rn value (the nearest neighbour distance) 50
Figure 2.11 Peak map for Rn values, total no of openings, single & double opening
burrows .. 50
Figure 3.1 Area of Burrow ... 64
Figure 3.2 Burrows with single, double and triple openings .. 71
Figure 3.3 Distribution of burrows as per area of burrow opening 72
Figure 3.4 Relationship between carapace length and area of opening for cast burrows 72
Figure 3.5 Relationship between carapace width and area of opening for cast burrows 73
Figure 3.6 Relationship between burrow depth and area of opening for cast burrows 73
Figure 3.7 Relationship between carapace width and burrow depth for cast burrows 74
Figure 3.8 Relationship between carapace length and burrow depth for cast burrows 74
Figure 3.9 Relationship between burrow depth and mean area of burrow for cast
burrows .. 75
Figure 3.10 Temperature profile at surface, half depth and full depth of burrows............75

Figure 3.11 Cast of Burrows BC 1, BC 2, BC 3 & BC 4 .. 76

Figure 3.12 Cast of Burrows BC 5, BC 6, BC 7 & BC 8 .. 77

Figure 3.13 Cast of Burrows BC 9, BC 10, BC 11 & BC 12 ... 78

Figure 4.1 Dorsal view of crab showing carapace length (CL); carapace width (CW); and total carapace length (TCL) ... 89

Figure 4.2 Lateral view showing chela height (ChH) and chela length (ChL) 89

Figure 4.3 Right and left handedness of crabs ... 94

Figure 4.4 Prevalence of adult and juvenile crabs with dominant right or left chela as function of gender, (i) Adult crabs; (ii) Juvenile crabs; (iii) Dominant chela in male; (iv) Dominant chela in female; (v) Dominant chela, irrespective of gender .. 95

Figure 4.5 Frequency of larger left or right chela (width) in females, (i) Larger left chela - left chela width; (ii) Larger left chela - right chela width; (iii) Larger right chela - left chela width; (iv) Larger right chela - right chela width. Abscissa represents frequency and coordinate represents different groups based on measurements of body parts. .. 96

Figure 4.6 Frequency of larger left or right chela (width) in males, (i) Larger left chela - left chela width; (ii) Larger left chela - right chela width; (iii) Larger right chela - left chela width; (iv) Larger right chela - right chela width. Abscissa represents frequency and coordinate represents different groups based on measurements of body parts. .. 97

Figure 4.7 Frequency of larger left or right chela (width), irrespective of gender, (i) Larger left chela - left chela width; (ii) Larger left chela - right chela width; (iii) Larger right chela - left chela width; (iv) Larger right chela - right chela width. Abscissa represents frequency and coordinate represents different groups based on measurements of body parts. .. 98

Figure 4.8 Frequency of larger left or right chela (length) in females, (i) Larger left chela - left chela length; (ii) Larger left chela - right chela length; (iii) Larger right chela - left chela length; (iv) Larger right chela - right chela length. Abscissa represents frequency and coordinate represents different groups based on measurements of body parts. .. 99

Figure 4.9 Frequency of larger left or right chela (length) in males, (i) Larger left chela - left chela length; (ii) Larger left chela - right chela length; (iii) Larger right chela - left chela length; (iv) Larger right chela - right chela length. Abscissa represents frequency and coordinate represents different groups based on measurements of body parts. .. 100

Figure 4.10 Frequency of larger left or right chela (length), irrespective of gender, (i) Larger left chela - left chela length; (ii) Larger left chela - right chela length; (iii) Larger right chela - left chela length; (iv) Larger right chela - right chela length.
Abscissa represents frequency and coordinate represents different groups based on measurements of body parts.

Figure 4.11 Frequency of CW and CL of male and female crabs, (i) Female – CW; (ii) Female – CL; (iii) Male – CW; (iv) Male – CL. Abscissa represents frequency and coordinate represents different groups based on measurements of body parts.

Figure 4.12 Frequency of CW and CL of crabs, irrespective of gender, (i) CW; (ii) CL.

Figure 4.13 Regression between L_{ChL} versus L_{ChW} and R_{ChL} versus R_{ChW} in female crabs, (i) & (ii) Larger left chela; (iii) & (iv) Larger right chela; (v) & (vi) All females, irrespective of handedness.

Figure 4.14 Regression between L_{ChL} versus L_{ChW} and R_{ChL} versus R_{ChW} in male crabs, (i) & (ii) Larger left chela; (iii) & (iv) Larger right chela; (v) & (vi) All males, irrespective of handedness.

Figure 4.15 Regression between L_{ChL} versus L_{ChW} and R_{ChL} versus R_{ChW}, irrespective of gender.

Figure 4.16 Regression between L_{ChL} versus T_{LLCh} and R_{ChL} versus T_{LRCh} in female crabs, (i) & (ii) Larger left chela; (iii) & (iv) Larger right chela; (v) & (vi) All females, irrespective of handedness.

Figure 4.17 Regression between L_{ChL} versus T_{LLCh} and R_{ChL} versus T_{LRCh} in male crabs, (i) & (ii) Larger left chela; (iii) & (iv) Larger right chela; (v) & (vi) All males, irrespective of handedness.

Figure 4.18 Regression between L_{ChL} versus T_{LLCh} and R_{ChL} versus T_{LRCh} all crabs irrespective of handedness and gender.

Figure 4.19 Regression between L_{ChW} versus T_{LLCh} and R_{ChW} versus T_{LRCh} in male and female crabs, irrespective of handedness, (i) & (ii) Female; (iii) & (iv) Male.

Figure 4.20 Regression between L_{ChW} versus T_{LLCh} and R_{ChW} versus T_{LRCh}, irrespective of gender and handedness.

Figure 4.21 Regression between L_{ChL} versus CL and R_{ChL} versus CL in female and male crabs, (i) & (ii) Female; (iii) & (iv) Male.

Figure 4.22 Regression between L_{ChL} versus CL and R_{ChL} versus CL, irrespective of gender.

Figure 4.23 Regression between L_{ChW} versus CL and R_{ChW} versus CL in female and male crabs, (i) & (ii) Female; (iii) & (iv) Male.

Figure 4.24 Regression between L_{ChW} versus CL and R_{ChW} versus CL in crabs, irrespective of gender.

Figure 4.25 Regression between CW versus CL in female crabs, (i) Larger left chela; (ii) Larger right chela, (iii) Irrespective of handedness.
Figure 4.26 Regression between CW versus CL in male crabs, (i) Larger left chela; (ii) Larger right chela; (iii) Irrespective of handedness

Figure 4.27 Regression between CW versus CL irrespective of handedness and gender

Figure 4.28 Regression between BW versus CL and BW versus CW in female and male crabs, (i) & (ii) Female; (iii) & (iv) Male

Figure 4.29 Regression between BW versus CL and BW versus CW irrespective of gender

Figure 5.1 Experimental setup

Figure 5.2 Experimental setup

Figure 5.3 Digitization of Actogram

Figure 5.4 Double-plotted actogram of a representative male Barytelphusa cunicularis (BcM # 05) under DD following LD 12:12, DD, LD 12:12 and LL

Figure 5.5 Double-plotted actogram of a representative female Barytelphusa cunicularis (BcF # 05) under DD following LD 12:12, DD, LD 12:12 and LL

Figure 5.6 Periodogram of the locomotor activity rhythm of a representative male Barytelphusa cunicularis (BcM # 05) under DD following LD 12:12, DD, LD 12:12 and LL

Figure 5.7 Periodogram of the locomotor activity rhythm of a representative female Barytelphusa cunicularis (BcF # 05) under DD following LD 12:12, DD, LD 12:12 and LL

Figure 5.8 Average prominent periods of locomotor activity rhythm in the groups of male and female crabs exposed to different light schedules