Chapter 3

Dominating Colour Transversal Number for Bipartite Graphs

3.1 Bounds and Characterization Theorems for Bipartite Graphs

Theorem 3.1.1. Let G be a connected bipartite graph with bipartition (X, Y); $|X| \leq |Y|$ and $p \geq 3$. Then $\gamma_{st} = \gamma + 1$ if and only if every vertex in X has at least two neighbours which are pendant vertices.

Proof. Let $\gamma_{st} = \gamma + 1$.

Any γ-set D cannot intersect both X and Y. As $|X| \leq |Y|$, $D = X$ is the only γ-set. Let $x \in X$. If x has only one pendant neighbour, then there
exists $y \in N(x)$ such that $\{D - \{x\}\} \cup \{y\}$ is a γ_{st}-set with cardinality γ, which is a contradiction. Hence x has at least two pendant neighbours.

Conversely, if every x in X has at least two pendant neighbours, then X is the unique γ-set in G, which is not an std-set. $X \cup \{y\}$ where y is any element of Y, is an std-set with minimum cardinality $(\gamma + 1)$. Hence $\gamma_{st} = \gamma + 1$.

Definition 3.1.2. For a bipartite graph G, $\gamma_{st} = \gamma$ or $\gamma + 1$. All bipartite graphs for which $\gamma_{st} = \gamma$ are called Type I graphs. Other graphs are Type II graphs.
Note: In Type II graphs vertices at even distances are all support vertices or all non-support vertices. Moreover each support vertex has at least two pendant neighbours. One of the colour classes is the unique γ-set.

Definition 3.1.3. Let m, n, k be three non-negative integers. By $K_{m,n}^k$ we mean a graph obtained by joining the centres of $K_{1,m}$ and $K_{1,n}$ by a path of length k. This graph is called a double star of length k and it contains $(m + n + k + 1)$ vertices when $k \geq 1$. When $k = 0$, $K_{m,n}^k$ is the disjoint union of $K_{1,m}$ and $K_{1,n}$ and it contains $(m + n + 2)$ vertices. In $K_{m,n}^k$, (m, n) is a partition of $p - k - 1$. We note that $K_{0,0}^k$ is P_{k+1} and $K_{0,0}^0$ is K_2. Examples are given in Figure 3.2.

![Figure 3.2: Double stars.](image)

Theorem 3.1.4. Let $G(\neq K_2)$ be a graph. Then $\gamma_{st}(G) = 2$ if and only if G is a bipartite graph that contains $K_{m,n}^k$ as a spanning subgraph where $k = 0$, 1 or 3.
Chap:3 γ_{st} for Bipartite Graphs

Proof. Let γ_{st} = 2. Obviously χ = 2. Since γ ≤ γ_{st}, we have γ ≤ 2. When χ = 2 and γ = 1, G becomes a connected bipartite graph with a vertex of full degree. So G becomes the star graph \(K_{1,p-1} = K^1_{0,p-2} \).

When χ = 2 and γ = 2, G cannot have more than two components. If G has two components then G in a union of two disjoint stars namely \(K_{1,m-1} \cup K_{1,n-1} = K^0_{m-1,n-1} \), where \((m, n)\) is a partition of \(p \) and \(m, n \geq 2 \) or \(K_{1,p-2} \cup K_1 = K^0_{p-2,0} \).

Suppose G has exactly one component. Then G is a connected bipartite graph with bipartition \((X, Y)\). As γ_{st} = 2, there exists a γ_{st}-set \(D = \{x, y\} \) such that \(x \in X, y \in Y \) and \(p_{n}(x, D) = Y - \{y\} \) and \(p_{n}(y, D) = X - \{x\} \).

As G is a connected graph, there is a path between x and y. If x and y are adjacent then \(d(x, y) = 1 \); otherwise \(d(x, y) = 3 \). So G must have a double star of length 1 or 3. That is G is a graph that contains a spanning subgraph of \(K^1_{m,n} \) or \(K^3_{m,n} \).

The converse can be verified easily.

Theorem 3.1.5. In a bipartite graph G, γ_{st} = 3 if and only if G is any one of the following graphs.

(a) Union of three stars.

(b) Union of a star and a graph containing a spanning subgraph of \(K^2_{m,n} \).
(c) A type II graph containing a spanning subgraph of $K^2_{m,n}$

(d) A type I graph with two vertices $x_1, x_2 \in X$ and one vertex $y \in Y$ such that $d(x_1) + d(x_2) \geq |Y| - 1$ and $d(y) \geq |X| - 2$.

Proof. Assume that $\gamma_{st}(G) = 3$.

If $\gamma = 1$, we have a vertex of full degree and hence by Theorem 2.2.5 $\chi = \gamma_{st}$ which is not true. When $\gamma = 2$, G has at most two components and in each component there is a vertex of full degree. In this case also $\gamma_{st} = 2$ which is a contradiction.

If there is only one component, then G is connected. Since $\gamma = \chi = 2$ and $\gamma_{st} = 3$, G is a type II graph that contains a spanning subgraph of $K^2_{m,n}$ where (m, n) is a partition of $(p - 3)$.

If $\gamma = 3$, there can be at most three components and in case the number of components is maximum, G is a union of three disjoint stars. When there are two components, G is a union of a star and a graph containing a spanning subgraph of $K^2_{m,n}$. If G is connected, then G is a Type I graph with two vertices $x_1, x_2 \in X$ (or Y) and one vertex $y_1 \in Y$ (or X) such that $d(x_1) + d(x_2) \geq |Y| - 1$ and $d(y_1) \geq |X| - 2$. Hence the result.

Corollary 3.1.6. Let G be a bipartite graph. Then $\gamma(G) = 2$ if and only if G contains $K^k_{m,n}$ as a spanning subgraph where $k = 0, 1, 2, 3$.

Proof. Let $\gamma(G) = 2$. Since G is bipartite, $\gamma_{st}(G) = 2$ or 3. When $\gamma_{st} = 2$, by Theorem 3.1.4 G contains $K_{m,n}^k$ as a spanning subgraph where $k = 0, 1, 3$. When $\gamma_{st} = 3$, by Theorem 3.1.4 G contains $K_{m,n}^k$ as a spanning subgraph where $k = 2$.

The converse is obvious.

\section{Trees}

In this section, we investigate γ_{st} for trees that attain various bounds involving order, Δ, γ and γ_c.

Remark: For any graph G, $\gamma \leq p - \Delta$, and for bipartite graphs $\gamma_{st} = \gamma$ (or) $\gamma + 1$. Therefore we have $p - \Delta + 1$ is an upper bound for γ_{st}. In the following theorems we investigate those trees for which $\gamma_{st} = p - \Delta + 1$ or $p - \Delta$.

Theorem 3.2.1. For any tree, T, $\gamma_{st} \leq p - \Delta + 1$. Equality is attained if and only if T is a star $K_{1,p-1}$.

Proof. Obviously $\gamma_{st} \leq p - \Delta + 1$. If $\gamma_{st} = p - \Delta + 1$ then $\gamma = p - \Delta$ and $\gamma_{st} = \gamma + 1$. But $\gamma = p - \Delta$ if and only if T is a wounded spider by Theorem 1.1.41. Again $\gamma_{st} = \gamma + 1$ implies T is a Type II graph. Hence T is a star $K_{1,p-1}$.
Theorem 3.2.2. If T is tree, then $\gamma_{st}(T) = p - \Delta$ if and only if T is a wounded spider which is not a star.

Proof. Let T be a wounded spider that is not a star. Let v be the vertex of T with $d(v) = \Delta$ (Ref. Figure 3.3).

Take $N(v) = \{u_1, u_2, u_3, \ldots, u_k\}$ and $V - N[v] = \{v_1, v_2, \ldots, v_l\}$ where each v_i is a pendant vertex that is adjacent to u_i.

Clearly $p = k + l + 1$ where $k = \Delta$. The set $\{v, v_1, v_2, v_3, \ldots v_l\}$ is a minimum std-set of T and hence $\gamma_{st} = p - \Delta$.

Conversely, let T be a tree with $\gamma_{st} = p - \Delta$. By Theorem 3.2.1, T cannot be a star. Let v be a vertex with $d(v) = \Delta$. Take (X,Y) as the unique bipartition of T with $v \in X$. Naturally $N(v) \subseteq Y$. Suppose there exists a vertex $u \in Y - N(v)$. Let $D = M \cup \{v\}$, where M is a maximal
independent set in \((V - N[v]) \) containing \(u \). Since \(M \) is maximal, \(M \cup \{v\} \) becomes a dominating set and also an std-set of \(G \). As \(u \in Y \), there exists an \(x(\neq v) \in X \) such that \(u \) is adjacent to \(x \). Therefore \(|M| \leq (|V - N[v]| - 1) \).

\[
|M \cup \{v\}| = |M| + 1 \\
\leq (|V - N[v]| - 1) + 1 \\
\leq p - (\Delta + 1) - 1 + 1 \\
= p - \Delta - l \\
< p - \Delta \\
= \gamma_{st}.
\]

This is a contradiction to the fact \(M \cup \{v\} \) is an std-set. Hence \(Y = N(v) \) and \(X = V - N(v) \). \(T \) cannot be a spider. Hence \(T \) is a wounded spider that is not a star.

Remark: For a bipartite graph, \(\gamma_{st} \leq \gamma + 1 \); since \(\gamma \leq \frac{p}{2} \) we have \(\gamma_{st} \leq \frac{p}{2} + 1 \) for trees and this bound is sharp as proved below.

Theorem 3.2.3. If \(T \) is a tree, then \(\gamma_{st} = \frac{p}{2} + 1 \) if and only if \(T \) is \(K_2 \).

Proof. Let \(\gamma_{st} = \frac{p}{2} + 1 \). Since \(\gamma \leq \frac{p}{2} \), we have \(\gamma = \frac{p}{2} \). By Theorem 1.1.38, \(T \) is \(C_4 \) or \(H^+ \) where \(H \) is a connected graph. If \(H \neq K_1 \), then \(T = H^+ \) is a Type I graph and so \(\gamma_{st} = \frac{p}{2} \), a contradiction. Hence \(H = K_1 \) and \(T = H^+ = K_2 \).
Conversely if $T = K_2$, then $\gamma_{st} = \frac{p}{2} + 1$.

Corollary 3.2.4. For a tree T, $\gamma + \gamma_{st} \leq p + 1$. The bound is attained if and only if $T = K_2$.

Proof. Since $\gamma \leq \frac{p}{2}$ and $\gamma_{st} \leq \frac{p}{2} + 1$, we have $\gamma + \gamma_{st} \leq p + 1$. When $\gamma + \gamma_{st} = p + 1$, we have $\gamma = \frac{p}{2}$ and $\gamma_{st} = \frac{p}{2} + 1$. Hence by Theorem 3.2.3, $T = K_2$. Converse is trivial.

Corollary 3.2.5. For a tree T, $\chi + \gamma_{st} \leq \frac{p}{2} + 3$. The bound is attained if and only if $T = K_2$.

Proof. Since for a tree, $\chi \leq 2$ and $\gamma_{st} \leq \frac{p}{2} + 1$, we have $\chi + \gamma_{st} \leq \frac{p}{2} + 3$ and if the bound is attained then $\gamma_{st} = \frac{p}{2} + 1$. Hence by Theorem 3.2.3, $T = K_2$. The converse is obvious.

Theorem 3.2.6. If T is a tree, then $\gamma_{st} = \frac{p}{2}$ if and only if T is $K_{1,3}$ or H^+ where H is a non-trivial tree.

Proof. Let $\gamma_{st} = \frac{p}{2}$. Then either $\gamma = \frac{p}{2} - 1$ or $\gamma = \frac{p}{2}$. If $\gamma = \frac{p}{2}$, then by Theorem 1.1.38, G is H^+ where H is a non-trivial tree. Now assume $\gamma = \frac{p}{2} - 1$. Since $\gamma_{st} = \frac{p}{2}$, we have $\gamma_{st} = \gamma + 1$ and hence T is a Type II graph. Also p is even and $p \geq 4$. Let $T = G(X, Y)$ with $|X| \leq |Y|$. By Theorem 3.1.1 X is the unique γ-set and hence $|X| = \frac{p}{2} - 1$. Also every vertex in X
has at least two pendant neighbours in Y which implies that $|X| \leq \frac{p}{3}$ and $|Y| \geq 2|X| = 2\left(\frac{p}{2} - 1\right) = p - 2$. Since $|X| \leq \frac{p}{3}$, we have $\frac{p}{2} - 1 \leq \frac{p}{3}$, which means that $p \leq 6$. This implies that $p = 4$ or 6. When $p = 4$, $|X| = 1$ and $|Y| = 3$ and consequently the tree is $K_{1,3}$. When $p = 6$, $|X| = 2$, and $|Y| = 4$. Since every vertex in X has at least two pendant neighbours in Y, the only possibility is that T is a forest namely $K_{1,2} \cup K_{1,2}$ which contradicts the fact that T is a tree. Hence $p = 6$ is not possible and we conclude $T = K_{1,3}$ or H^+ where H is a non trivial tree. The converse can easily be verified.

Theorem 3.2.7. If $T(\neq K_2)$ is a tree, then $\gamma_c + \gamma_{st} \leq \frac{3p}{2} - 2$. Equality is attained if and only if T is P_4.

Proof. Since $T \neq K_2$, we have by Theorem 3.2.3, $\gamma_{st} \leq \frac{p}{2}$. Also by Theorem 1.1.51, $\gamma_c = p - l(T) \leq p - \Delta \leq p - 2$. Hence $\gamma_{st} + \gamma_c \leq \frac{p}{2} + (p - 2) = \frac{3p}{2} - 2$.

Consider the equality $\gamma_{st} + \gamma_c = \frac{3p}{2} - 2$.

Case(i) Let the tree T be a type I graph with $\gamma_{st} = \gamma$. If $\gamma_c < p - 2$, $\gamma + (p - 2) > \frac{3p}{2} - 2$ implying that $\gamma > \frac{p}{2}$ which is impossible. Hence $\gamma_c = p - 2$ in which case $\gamma_{st} = \gamma = \frac{p}{2}$. Now $\gamma_c = p - 2$ implies that T is a path and $\gamma_{st} = \frac{p}{2}$ implies that $T = H^+$ where H is a non trivial tree. Hence we conclude that $T = P_4$.

Case(ii) Assume that the tree T is a type II graph that is $\gamma_{st} = \gamma + 1$. Again if $\gamma_c < p - 2$, we get $(\gamma + 1) + (p - 2) > \frac{3p}{2} - 2$ which means $\gamma > \frac{p}{2} - 1$ and hence $\gamma \geq \frac{p}{2}$. But $\gamma \leq \frac{p}{2}$ is always true for T and hence $\gamma = \frac{p}{2}$. Hence as in case I, we have $T = P_4$ but P_4 is not a type II graph. Hence no solution exists in this case. Combining the two cases, we get $T = P_4$ is the only graph. Converse is obvious.

\[\square\]
Corollary 3.2.8. If \(T(\neq K_2) \) is a tree then \(\gamma_{st} + \chi \leq \frac{p}{2} + 2 \). The bound is attained if and only if \(T = K_{1,3} \) or \(H^+ \) where \(H \) is a non trivial tree.

Proof. Since \(T \) is a tree which is not \(K_2 \), by Theorem 3.2.3, \(\gamma_{st} \leq \frac{p}{2} \). Hence \(\gamma_{st} + \chi \leq \frac{p}{2} + 2 \). The bound is attained when \(\gamma_{st} = \frac{p}{2} \) and hence by Theorem 3.2.6, \(T = K_{1,3} \) or \(H^+ \) where \(H \) is a non-trivial tree. \(\blacksquare \)