List of figures

Figure 2-1	A view of BETA machine along with its sub-system	10
Figure 2-2	Schematic of electrical connections of BETA device	16
Figure 2-3	Typical waveform of averaged ion saturation current obtained using Langmuir probe. The ripple in the first 400 millisecond of the shot is due to the ripple in the toroidal magnetic field. Horizontal axis represents time (0.2 sec div) and vertical axis represents voltage (0.2 V div)	17
Figure 2-4	Typical layout of microwave components for launching the microwave power into BETA device to form the plasma. Power supply circuit diagram for the magnetron is also shown	19
Figure 2-5	Typical sketch of plasma sheath in contact with conducting walls. Once the sheath is formed, a typical profile for the electron and ion densities, potential and electric field of the sheath is outlined	22
Figure 2-6	A typical characteristics of a Langmuir probe	26
Figure 2-7	Typical layout for measuring the ion saturation current for determining the plasma density. When the Langmuir probe starts conducting, a potential develops across the measuring resistance, proportional to plasma density, which gives a measure of plasma density	30
Figure 2-8	Circuit diagram showing details of electronics used in measuring plasma density	31
Figure 2-9	Circuit diagram of voltage follower used in measuring plasma floating potential	32
Figure 2-10	A typical ramp voltage and probe current obtained while measuring electron temperature of the plasma	33
Figure 2-11	A typical probe characteristic obtained while measuring electron temperature of the plasma	33
Figure 2-12	A circuit diagram of the electronics, which generates trigger pulses, to operate different system of the experimental setup in predefined time delays	35
Figure 2-13 A block diagram showing the schematic of HP 8753E Vector Network Analyzer (VNA).

Figure 2-14 The figure shows S_{11} or return loss for the standard WR340 waveguide measured using HP 8753E VNA. A return loss of about -35 dB is obtained at 2.45 GHz. The x-axis of the figure represents frequency span, where start frequency is 2.4 GHz and the stop frequency is 2.5 GHz. The y-axis of the figure shows a reference cursor at 0 dB and each division represents 10 dB.

Figure 2-15 The figure shows S_{12} or insertion loss for the standard WR340 waveguide measured using HP 8753E VNA. An insertion loss of about -0.03 dB is obtained at 2.45 GHz. The x-axis of the figure represents frequency span, where start frequency is 2.4 GHz and the stop frequency is 2.5 GHz. The y-axis of the figure shows a reference cursor at 0 dB and each division represents 10 dB.

Figure 2-16 The figure shows SWR for the standard WR340 waveguide measured using HP 8753E VNA. A value of about 1.04 is obtained at 2.45 GHz. The x-axis of the figure represents frequency span, where start frequency is 2.4 GHz and the stop frequency is 2.5 GHz. The y-axis of the figure shows a reference cursor at 1.0 and each division represents 10 dB.

Figure 2-17 The figure shows smith chart for the standard WR340 waveguide measured using HP 8753E VNA. The measurement line around the cursor represents the response over the frequency span, where start frequency is 2.4 GHz and the stop frequency is 2.5 GHz. The marker is positioned on the horizontal line at the frequency of our interest 2.45 GHz, showing almost no reactive impedance and lies on an impedance circle of value 1 showing perfect matching of the component.

Figure 2-18 Typical output from a spectrum analyzer. The graph shows that the frequency of the source peak at 2.47 GHz with FWHM of 0.03 GHz and delivers a power of about 57 dBm which corresponds to a power of about 600W. The x-axis represents frequency span, where start frequency is 2.0 GHz and the stop frequency is 2.9 GHz. The y-axis represents the microwave power in dBm and each division represents 10 dB.

Figure 2-19 Typical result of HFSS analysis for WR340 waveguide is shown. The first graph shows a return loss of better than -50 dB over the frequency range lying between 2.4 GHz and 2.5 GHz. The second graph shows a low insertion loss, which is better than -0.01 dB and the last graph shows the VSWR of less than 1.02.

Figure 2-20 Electric field profile in WR340 waveguide structure as obtained from HFSS analysis. The cutplane is generated midway across broad dimension of the waveguide. As expected the contours are vertical showing transverse electric field pattern. The formation of nodes and antinodes are also seen along the axial length of the waveguide, the direction in which the wave propagates.
Figure 2-21 Electric field profile in WR340 waveguide structure as obtained from HFSS analysis. The cutplane is generated midway across the narrow dimension of the waveguide. The contours display propagation of TE_{10} mode and clearly shows formation of nodes and antinodes along the axial length of the waveguide, the direction in which the wave propagates...

Figure 2-22 Typical result of HFSS analysis for the optimised waveguide coupler is shown. The first graph shows a return loss of around -25 dB at the frequency of our interest, i.e. 2.45 GHz. The second graph shows a low insertion loss, which is better than -0.015 dB at our frequency and the last graph shows the VSWR of less than 1.12...

Figure 2-23 Electric field profile in waveguide adapter as obtained from HFSS analysis. The cutplane is generated midway across the narrow dimension of the waveguide. The contours display propagation of TE_{10} mode and clearly show formation of nodes and antinodes along the axial length of the waveguide, the direction in which the wave propagates....

Figure 2-24 Electric field profile in waveguide adapter as obtained from HFSS analysis. The cutplane is generated midway across broad dimension of the waveguide. The contours display propagation of TE_{10} mode and clearly show formation of nodes and antinodes along the axial length of the waveguide, the direction in which the wave propagates....

Figure 3-1 Dispersion relation for the transverse wave in a collisionless plasma and electron plasma. The frequency dependence of phase and group velocities is shown...

Figure 3-2 Frequency dependence of the phase and group velocities for the transverse RCP and LCP waves propagating along magnetic field in a collisionless cold electron plasma...

Figure 3-3 Schematic of O-mode launching...

Figure 3-4 Schematic of X-mode launching...

Figure 3-5 Dispersion relation for perpendicular propagating modes in magnetic plasma...

Figure 3-6 Wave normal surface which depicts the phase velocity as a function of theta...

Figure 3-7 The CMA diagram for waves in a cold electron gas. The solid lines represent the principal resonance's and the dashed lines the reflection points...

Figure 3-8 Theoretical estimate of electron temperature with different confinement time and fill density...
Figure 3-9 Density contour for ECR produced plasma ... 74
Figure 3-10 Contour of potential for ECR produced plasma .. 75
Figure 3-11 Radial profile of density for a toroidal magnetic field of 0.08 T 76
Figure 3-12 Radial profile of electron temperature at a toroidal magnetic field of 0.08 T. ... 77
Figure 3-13 Radial profile of floating potential and electric field at a toroidal magnetic field of 0.08 T. ... 78
Figure 3-14 Radial profile of density for ECR formed plasma at toroidal magnetic field of 0.06 T ... 79
Figure 3-15 Radial profile of plasma potential for a toroidal magnetic field of 0.06 T 80
Figure 3-16 Results of computational analysis carried out for ECR produced plasma in BETA machine ... 84
Figure 3-17 Cross power of density and floating potential, phase and coherence spectra of rf produced hydrogen plasma at $B_i = 0.08 \, T$ at $r = -2 \, cm$... 85
Figure 3-18 Cross power of density and floating potential, phase and coherence spectra of rf produced hydrogen plasma at $B_i = 0.08 \, T$ at $r = +2 \, cm$... 86
Figure 3-19 Cross power of density and floating potential, phase and coherence spectra of rf produced hydrogen plasma at $B_i = 0.08 \, T$ at $r = +6 \, cm$... 87
Figure 3-20 Cross power of density and floating potential, phase and coherence spectra of rf produced hydrogen plasma at $B_i = 0.08 \, T$ at $r = +8 \, cm$... 89
Figure 3-21 The radial profile of n_i for rf produced hydrogen plasma at $B_i = 0.08 \, T$ 91
Figure 4-1 A typical density contour without vertical field for a filament produced plasma at a toroidal field of 0.04 T, showing the slab nature of the profile in the poloidal cross section ... 104
Figure 4-2 A typical potential contour of filament produced plasma at a toroidal magnetic field of 0.04 T ... 105
Figure 4-3 Normalised density contour in the lower half portion of the poloidal cross-section showing that the contours close elliptically in the lower half of the poloidal cross-section ($r - z$ plane) ... 107
Figure 4-4 Normalised potential contours in the lower half of the poloidal cross-section. The contour is generated at a toroidal field of 0.024 T.

Figure 4-5 Plot of density and floating potential with B, of 0 T, 3 x 10^-4 T, 6 x 10^-4 T and 9 x 10^-4 T.

Figure 4-6 A typical spectrum obtained with a filament produced plasma at r = 6 cm. The top figure shows the cross power spectrum of the low frequency fluctuations. The middle figure shows the phase difference between the density and potential signals showing the flute nature of the coherent fluctuations. The bottom figure shows a high degree of coherence of the fluctuations.

Figure 4-7 Radial profile of integrated power of density fluctuations with B, = 0 T (curve(a)), 3 x 10^-4 T (curve(b)), 6 x 10^-4 T (curve(c)) and -6 x 10^-4 T (curve(d)). The curves show (i) the increase in the integrated power with B, = 3 x 10^-4 T (corresponding to r = 0) and then its reduction as B, is increased to 6 x 10^-4 T, and (ii) that greater suppression is achieved with a positive vertical field, compared with that obtained with a reversed vertical magnetic field of the same magnitude.

Figure 4-8 Variation in the power content of the coherent fluctuations (for power < 2 kHz ± 0.19 kHz) of (a) density (b) floating potential and (c) their ratio at different vertical magnetic fields at r = 6 cm. The peak at B, = -3 x 10^-4 T is due to the existence of a threshold of B, ~ 3 x 10^-4 T. Also the coherence is greater at B, = -3 x 10^-4 T.

Figure 4-9 Auto power spectrum of (a) density and (b) floating potential of a filament produced plasma at r = 6 cm. (i) B, = -9 x 10^-4 T, (ii) B, = -6 x 10^-4 T, (iii) B, = -3 x 10^-4 T, (iv) B, = 0 T, (v) B, = 6 x 10^-4 T and (vi) B, = 9 x 10^-4 T. The plot shows the shifting of the frequency peaks to a higher frequency and reduction in the power level of the fluctuations as B, is increased.