CHAPTER 1 INTRODUCTION AND LITERATURE SURVEY

1.1 INTRODUCTION

1.1.1 OBJECTIVES

1.2 REVIEW OF LITERATURE

1.2.1 HYDROCARBON UTILIZATION BY BACTERIA

1.2.2 OCCURRENCE OF ALIPHATIC HYDROCARBONS

1.2.3 BIOCHEMISTRY OF HYDROCARBON METABOLISM

1.2.4 OXYGENASE SYSTEM

1.2.5 UTILIZATION OF METHANE BY BACTERIA

 1.2.5.1 Soluble methane monooxygenase
 1.2.5.2 Role of MMOB in catalysis
 1.2.5.3 Mechanism of catalysis of sMMO
 1.2.5.4 Genetic organization of sMMO
 1.2.5.5 Particulate methane monooxygenase (pMMO)
 1.2.5.6 Regulation of pMMO expression by a unique copper switch

1.2.6 UTILIZATION OF C2-C4 ALKANES BY BACTERIA

 1.2.6.1 Ethane utilization
 1.2.6.2 Propane utilization
 1.2.6.3 Butane utilization

1.2.7 UTILIZATION OF LIQUID ALKANES BY BACTERIA

 1.2.7.1 Enzymology of alkane oxidation by Pseudomonas oleovorans
 1.2.7.2 Genetics of alkane utilization by Pseudomonas oleovorans
1.2.8 FUNCTIONAL AND EVOLUTIONARY RELATIONSHIP AMONG DIVERSE MONOOXYGENASES

1.2.9 GENERAL PROPERTIES OF ELECTRON TRANSPORT COMPONENTS

1.2.10 IDENTIFICATION OF NEW GENES BY DIFFERENTIAL DISPLAY

1.2.10.1 Classical approaches
1.2.10.2 Representational difference analysis
1.2.10.3 Differential Display
1.2.10.4 Strategic considerations
1.2.10.5 Applications of Differential Display

1.2.11 GENOME ANALYSIS THROUGH PULSED FIELD GEL ELECTROPHORESIS

1.2.11.1 Pulsed field gel electrophoresis
1.2.11.2 Strategies for mapping by PFGE
1.2.11.3 Two-Dimensional PFGE
1.2.11.4 Comparative mapping – use in studying bacterial diversity
1.2.11.5 PFGE as used in bacterial genome analysis

CHAPTER 2 MATERIALS AND METHODS

2.1 MATERIALS
2.1.1 Bacterial strains
2.1.2 Chemicals
2.1.3 Oligonucleotide primers
2.1.4 Media and buffers
 2.1.4.1 LB (Luria-Bertani)
 2.1.4.2 Minimal medium
 2.1.4.3 Trace element solutions
 2.1.4.4 MM agarose
 2.1.4.5 20X SSC
 2.1.4.6 TE buffer (pH 8.0)
 2.1.4.7 50X Denhardts solution
 2.1.4.8 Scintillation fluid
2.1.4.9 TAE buffer (50X) .. 53
2.1.4.10 6X sample buffer 53
2.1.4.11 10X FA gel buffer 53
2.1.4.12 Denaturation buffer 54
2.1.4.13 Neutralization buffer 54
2.1.4.14 Hybridization buffer 54
2.1.4.15 RNA sample loading buffer 54
2.1.5 Solutions for SDS-PAGE 55
2.1.5.1 30% Acrylamide solution 55
2.1.5.2 1.5M Tris.Cl (pH 8.8) 55
2.1.5.3 0.5M Tris.Cl (pH 6.8) 55
2.1.5.4 6X sample buffer 55
2.1.5.5 Running buffer (pH 8.3) 55
2.1.5.6 Separating gel ... 55
2.1.5.7 Stacking gel .. 56
2.1.6 Protein labelling medium 56

2.2 METHODS ... 57

2.2.1 MICROBIOLOGICAL, BIOCHEMICAL AND PROTEIN RELATED TECHNIQUES 57

2.2.1.1 Growth and induction of monooxygenase activity in *Pseuodomonas* spp. 57
2.2.1.2 Monooxygenase assay using whole cells 57
2.2.1.3 Breakage of cells and preparations of crude extract 58
2.2.1.4 Protein estimation 58
2.2.1.5 Assay of BMO in crude extract 59
2.2.1.6 Stabilization of BMO in crude extract 59
2.2.1.7 Cell fractionation 59
2.2.1.8 Butanol dehydrogenase assay 59
2.2.1.9 Optimization of membrane and cytosolic ratio for reconstituting BMO activity 60
2.2.1.10 membrane solubilization 60
2.2.1.11 Acetylene inhibition assay 60
2.2.1.12 Reconstitution of BMO activity by exogenous addition of ferredoxin and reductase 61
2.2.1.13 Gel-filtration of crude extract 61
2.2.1.14 Gel filtration of cytosolic fraction 61
2.2.1.15 Reductase assay 61
2.2.1.16 SDS-PAGE 62
2.2.1.17 Radiolabelling of proteins 62

2.2.2 GENETIC AND MOLECULAR BIOLOGICAL TECHNIQUES 63

2.2.2.1 GENERATION OF MUTANTS 63

2.2.2.2 DIFFERENTIAL DISPLAY 63

2.2.2.2.1 Isolation of RNA 63
2.2.2.2.2 Quantification of RNA 64
2.2.2.2.3 Quality and integrity of RNA preparation 64
2.2.2.2.4 cDNA preparation 64
2.2.2.2.5 PCR amplification 64
2.2.2.2.6 Identification of Differentially expressed cDNA and reamplification 65
2.2.2.2.7 Preparation of probe by random priming and purification of the probe 65
2.2.2.2.8 RNA blotting 66
2.2.2.2.9 Hybridization (Northern) 66

2.2.2.3 GENOME ANALYSIS THROUGH PULSED FIELD GEL ELECTROPHORESIS 67

2.2.1.3.1 Preparation of DNA in agarose blocks 67
2.2.1.3.2 Restriction enzyme digestion 67
2.2.1.3.3 Pulsed field gel electrophoresis 67
2.2.1.3.4 Transfer of DNA onto nylon membrane 68
2.2.1.3.5 Preparation of 4.9 kb probe and purification 68
2.2.1.3.6 Hybridization (Southern) 69
2.2.1.3.7 Autoradiography/phosphorimaging 69

CHAPTER 3 RESULTS 70

3.1 BIOCHEMICAL STUDIES 70

3.1.1 CHARACTERIZATION OF MONOOXYGENASE IN THE WHOLE CELLS 70

3.1.1.1 Monooxygenase activity in the whole cells 70
3.1.2 CHARACTERIZATION OF BMO IN CRUDE EXTRACT

3.1.2.1 BMO activity in the crude extract
3.1.2.2 Optimum protein concentration for BMO assay
3.1.2.3 Stability of BMO in crude extract
3.1.2.4 Partial purification of BMO activity by gel-filtration
3.1.2.5 Detection of butane induced polypeptides
3.1.2.6 Localization of BMO activity in the cell
3.1.2.7 Gel-filtration of cytosolic extract
3.1.2.8 Membrane solubilization
3.1.2.9 Reconstitution of BMO activity by exogenous addition of rubredoxin/ferredoxin and reductase to the membrane fraction
3.1.2.10 Presence of a reductase in Pseudomonas sp. IMT 37
3.1.2.11 Lack of BMO inhibition by acetylene

3.2 GENETIC STUDIES

3.2.1 Analysis of butane utilization pathway
3.2.1.1 Analysis of mutants
3.2.2 Identification of butane specific transcripts by Differential Display
3.2.3 PFGE analysis of Pseudomonas sp. IMT 37 genome

CHAPTER 4 DISCUSSION

4.1 BIOCHEMICAL STUDIES

4.1.1 STUDY OF BMO IN WHOLE CELLS

4.1.2 CHARACTERIZATION OF BMO IN THE CRUDE EXTRACT

4.1.2.1 Partial purification of BMO by gel-permeation chromatography
4.1.2.2 Localization of BMO
4.1.3 Study of cytosolic component
4.1.2.3 Solubilization of membrane

4.1.3 INDUCTION OF BUTANE SPECIFIC POLYPEPTIDES

4.2 GENETIC STUDIES
4.2.1 Analysis of butane utilization pathway
4.2.2 Identification of transcripts by Differential Display
4.2.3 Pulsed field gel electrophoretic analysis of Pseudomonas sp. IMT37 genome

Summary
Bibliography