List of Figures

3. Major divisions of the *Mycobacterium tuberculosis* complex (MTC) segregated according to the presence or absence of the investigated inter-, intra-, and lineage-specific polymorphisms (adapted from Huard et al., 2006).
6. PCR amplification, cloning and expression of *lppi* gene with N-terminal his tag.
7. Expression of *lppi* protein with N-terminal his tag at different temperatures (panel A) and in *E. coli* Rosetta (DE3)pLys host strain (panel B).
8. Multiple sequence alignment of *lppi* protein from different mycobacterial species.
9. Biosynthetic pathway of acylated and non-acylated *lppi* (adapted from Rezwan et al., 2007a).
10. PCR amplification and cloning of acylated *lppi* and non-acylated *lppi* gene with C-terminal his tag.
11. Expression and purification of acylated *lppi* protein with C-terminal his tag.
12. Purification of acylated *lppi* protein from *E. coli* BL21(DE3) cells.
13. Expression of nonacylated *lppi* with C-terminal his tag in *E. coli* BL21(DE3) cells.
14. PCR amplification, cloning, expression and purification of non-acylated *lppi* protein with wobble changes at N-terminus in *E. coli* BL21(DE3) cells.
15. Diagrammatic representation of the constructs made for the expression of acylated and nonacylated *lppi* in *M. tuberculosis* H37Ra.
16. PCR amplification, cloning and expression of acylated and non-acylated *lppi* proteins in *M. tuberculosis* H37Ra.
17. Specificity of rabbit anti-acylated *lppi* antisera with purified acylated *lppi* and non-acylated *lppi*.
18. Expression of *lppi* in cell wall of different mycobacterial species.
19. Cell surface localisation of *lppi* on different mycobacterial species.
20. IgG1 and IgG2a antibody response against acylated (panel A) and non-acylated Ippl (panel B) of *E. coli* origin in Balb/c mice.
21. PCR amplification and cloning of different GFP constructs of *Ippl*.
22. Fluorescence micrograph of *M. tuberculosis* H37Ra harboring pSC301 (panel A), pSC-Ippl-pro-gfp (panel B), pSC301b (panel C), pSC-Acy.Ippl-gfp (panel D) and pSC-NAcy.Ippl-gfp (panel E).
23A. Ippl promoter activity in *M. tuberculosis* Ra under different stress conditions.
23B. Comparative analysis of transcriptional activities of Ippl promoter in *M. tuberculosis* Ra showing induction under stress conditions.
25. Intracellular localisation of acylated Ippl and non-acylated Ippl in infected macrophages.
26. Architecture of database HaptenDB
27. Table showing detailed information of an antibody, a screen shot.
28. A screen shot displaying webpage of CarboDB.
29. Reactivity of mAb’s 24c5 and 9d8 with *M. microti* and *M. tuberculosis* H37Rv whole cell in ELISA.
30. Fluorescence micrograph showing binding of mAb’s 9d8 and 24c5 with *M. tuberculosis* H37Rv and *M. microti* whole cell.
31. Reactivity of mycobacterial anti-glucan mAb 24c5 with whole cells of *Candida albicans* cells.
32. Effect of mAb 24c5 reactive epitope of *M. microti* on infection of murine peritoneal macrophages activation in terms of IkB and NFkB levels.
33. Reactivity of mAb E2B9 with *M. microti* cell wall proteins in ELISA and immunoblotting.
34. Reactivity of mAb E2B9 with *M. microti* and *M. tuberculosis* H37Rv whole cell in ELISA.
35. Fluorescence micrographs showing binding of mAb E2B9 with *M.tuberculosis* H37Rv and *M. microti* whole cell.
36. Fluorescence micrographs showing binding of mAb E2B9 with the cell surface of different mycobacterial species.
37. Reactivity of mAb E2B9 with cell wall proteins of different mycobacterial species.
38. Reactivity of the mAb E2B9 with cell wall, cytosol and secretory fractions of *M. tuberculosis* Rv.
39. Immunoprecipitation of mAb E2B9 reactive molecule.
40. N-terminal sequence and BLAST search of mAb E2B9 affinity purified molecules.
41. Sequence alignment of MDP1 protein from *M. microti* and *M. tuberculosis* H37Rv.
42. PCR amplification and cloning of mdp1 gene in pET29a and expression in E.coli BL21(DE3) cells.

43. Cloning, expression, purification of MDP1 protein from E. coli BL21(DE3) cells and its reactivity with mAb E2B9.

44. Localization of mAb E2B9 binding sites on intracellular bacteria and macrophages.

45. Intracellular localization of mAb E2B9 binding sites in nuclear region of infected and normal THP1 macrophages.

46. Structure of MDP1 (adapted from Bhomwick et al., 2009).

47. Optimization of chromatin immunoprecipitation assay (ChIP).

48. Diagrammatic representation of positive clones obtained in ChIP using mAb E2B9 antibody.

List of Tables

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Targets for TB control (adapted from WHO report, 2008).</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Effect of mAbs on mycobacterial infection and associated variables (adapted from Freedman, 2006).</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Antigens and vaccination approaches in advanced stages of development (adapted from Hoft, 2008).</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Bacterial strains used in the present study.</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Mycobacterial species used in the study.</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Cell lines used in the study.</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>List of antibiotics used during the study.</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Different plasmid vectors used in the study.</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Oligonucleotide sequences used for amplification of different constructs.</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Flow cytometric analysis of M. tuberculosis H37Ra carrying the pSC-lppi-pro-gfp, pSC301 or pSC301b transcriptional fusion.</td>
</tr>
</tbody>
</table>