Contents

Declaration iii

Acknowledgments iv

List of Publications vi

1 Introduction 1

1.1 Granular Materials 1

1.2 Dynamical Properties of Granular Materials 3

1.2.1 Granular Materials with External Driving 4

1.2.2 Freely-Evolving Granular Materials 5

1.3 Molecular Dynamics Simulations 6

1.3.1 Time-Step-Driven MD Simulations 7

1.3.2 Event-Driven MD Simulations 9

1.4 Overview of Thesis 10

1.4.1 Kinetic Theory of Granular Gases 11

1.4.2 Inhomogeneous Cooling of Granular Gases 12

1.4.3 Aging and Long-time Tails in Granular Gases 15
1.4.4 Self-Gravitating Granular Gases

2 Kinetic Theory of Granular Gases
 2.1 Introduction
 2.2 The Velocity Distribution Function
 2.3 The Boltzmann-Enskog Equation for Inelastic Gases
 2.4 Time-Dependence of $\langle \psi(t) \rangle$
 2.5 Sonine Polynomial Expansion

3 Inhomogeneous Cooling of Granular Gases
 3.1 Introduction
 3.2 Phenomenology of the Cooling Problem
 3.2.1 Homogeneous Cooling State (HCS)
 3.2.2 Inhomogeneous Cooling State (ICS)
 3.3 Velocity Distributions in the HCS and ICS
 3.3.1 Details of Simulations
 3.3.2 2-Dimensional Case
 3.3.3 3-Dimensional Case
 3.4 Summary and Discussion

4 Aging and Long-time Tails in Granular Gases
 4.1 Introduction
 4.2 Cooling in Granular Gases
 4.3 Aging and Long-time Tails in Granular Gases
 4.4 Summary and Discussion
5 Self-Gravitating Granular Gases

5.1 Introduction ... 106
5.2 The Hierarchal Linked Cell Method 107
5.3 Model for a Self-Gravitating Granular Gas 110
5.4 Numerical Results .. 113
 5.4.1 Details of Simulations ... 113
 5.4.2 Clustering in a Granular Gas with Self-Gravity 114
5.5 Summary and Discussion ... 124