CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. INTRODUCTION AND REVIEW OF LITERATURE</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>REVIEW OF LITERATURE</td>
<td>5</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Metastasis</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2</td>
<td>Metastatic cascade</td>
<td>6</td>
</tr>
<tr>
<td>1.2.3</td>
<td>Growth rate and metastatic frequency</td>
<td>8</td>
</tr>
<tr>
<td>1.2.4</td>
<td>Cell surface properties of metastatic tumour cells</td>
<td>8</td>
</tr>
<tr>
<td>1.2.5</td>
<td>Cell attachment proteins in defining cell matrix</td>
<td>9</td>
</tr>
<tr>
<td>1.2.6</td>
<td>Changes in matrix molecules and adhesion factors with cell transformation and malignancy</td>
<td>12</td>
</tr>
<tr>
<td>1.2.7</td>
<td>Tumour cell detachment and transport</td>
<td>13</td>
</tr>
<tr>
<td>1.2.8</td>
<td>Cell-cell and cell-matrix interactions during tumour metastasis</td>
<td>13</td>
</tr>
<tr>
<td>1.2.9</td>
<td>Tumour cell invasion mechanisms</td>
<td>16</td>
</tr>
<tr>
<td>1.2.10</td>
<td>Tumour cell growth mechanisms</td>
<td>19</td>
</tr>
<tr>
<td>1.2.11</td>
<td>Anti tumour host response mechanisms</td>
<td>20</td>
</tr>
<tr>
<td>1.2.12</td>
<td>Basement membrane</td>
<td>22</td>
</tr>
<tr>
<td>1.2.13</td>
<td>Role of matrix degrading proteases in tumour invasion and metastasis</td>
<td>25</td>
</tr>
<tr>
<td>1.2.14</td>
<td>Angiogenesis</td>
<td>35</td>
</tr>
<tr>
<td>1.2.15</td>
<td>Metastasis-Genetic control</td>
<td>38</td>
</tr>
<tr>
<td>1.2.16</td>
<td>Role of polyphenolic compounds in cancer prevention</td>
<td>41</td>
</tr>
<tr>
<td>1.2.17</td>
<td>Relevance of present study</td>
<td>51</td>
</tr>
</tbody>
</table>
MATERIALS AND METHODS

2.1 MATERIALS

- **2.1.1 Test compounds**
- **2.1.2 Chemicals**
- **2.1.3 Reagents**
- **2.1.4 Instruments and devices**
- **2.1.5 Animals**
- **2.1.6 Tumour cell lines**

2.2 METHODOLOGY

- **2.2.1 Sterilization of glasswares**
- **2.2.2 Preparation of culture media**
- **2.2.3 Maintenance of cell lines in tissue culture**
- **2.2.4 Maintenance of experimental animals**
- **2.2.5 Maintenance of tumours in animals**
- **2.2.6 Preparation of B16F-10 melanoma cells for in vivo studies**
- **2.2.7 Preparation of B16F-10 melanoma cells for in vitro studies**
- **2.2.8 Determination of cell viability**
- **2.2.9 In vitro cytotoxicity studies**
- **2.2.10 Determination of the effect of compounds on the solid tumour development**
- **2.2.11 Determination of survival rate of tumour bearing animals**
- **2.2.12 Study on the in vivo invasion of B16F-10 melanoma cells in C57BL/6 mice**
- **2.2.13 Determination of the survival rate of metastatic tumour bearing animals**
- **2.2.14 Collagen matrix invasion assay**
- **2.2.15 Tumour cell adhesion experiment**
- **2.2.16 Tumour cell motility assay**
2.2.17 Gelatin zymography
2.2.18 Estimation of protein
2.2.19 Estimation of tissue hydroxyproline content
2.2.20 Estimation of serum sialic acid
2.2.21 Histopathological analysis
2.2.22 Two Stage Carcinogenesis
2.2.23 Methylcholanthrene induced chemical carcinogenesis
2.2.24 Preparation of spleen cells
2.2.25 Preparation of peritoneal macrophages
2.2.26 Collection and preparation of SRBC
2.2.27 Trypsinization of SRBC
2.2.28 Determination of circulating antibody titre
2.2.29 Determination of antibody forming cells
2.2.30 Determination of macrophage-mediated cytotoxicity
2.2.31 Statistical analysis

3.0 CYTOTOXIC AND TUMOUR REDUCING ACTIVITY OF POLYPHENOLIC COMPOUNDS

3.1 INTRODUCTION
3.2 MATERIALS AND METHODS
3.2.1 Test compounds
3.2.2 Tumour cells
3.2.3 In vitro short term cytotoxicity studies
3.2.4 Cytotoxicity of polyphenolic compounds in tissue culture
3.2.5 Effect of polyphenolic compounds on solid tumour development
3.3 RESULTS

3.3.1 *In vitro* cytotoxic activity of polyphenolic compounds

3.3.2 Cytotoxicity of polyphenolic compounds in tissue culture

3.3.3 Effect of polyphenolic compounds on solid tumour development

3.4 DISCUSSION

4.0 EFFECT OF POLYPHENOLIC COMPOUNDS ON LUNG METASTASIS OF B16F-10 MELANOMA CELLS IN MICE

4.1 INTRODUCTION

4.2 MATERIALS AND METHODS

4.2.1 Animals

4.2.2 Test compounds

4.2.3 Effect of polyphenolic compounds on the inhibition of lung nodule formation

4.2.4 Statistical analysis

4.3 RESULTS

4.3.1 Effect of polyphenolic compounds on the inhibition of lung metastasis

4.3.2 Effect of polyphenolic compounds on the survival rate of tumour bearing animals

4.3.3 Effect of polyphenolic compounds on lung collagen hydroxyproline content

4.3.4 Effect of polyphenolic compounds on serum sialic acid level

4.3.5 Histopathological analysis of lungs of metastatic tumour bearing animals

4.4 DISCUSSION
5.0 EFFECT OF POLYPHENOLIC COMPOUNDS ON THE IN VITRO INVASION OF B16F-10 MELANOMA CELLS THROUGH COLLAGEN MATRIX

5.1 INTRODUCTION 108
5.2 MATERIALS AND METHODS 109
 5.2.1 Cell line 109
 5.2.2 Polyphenolic compounds 109
 5.2.3 Effect of polyphenolic compounds on the collagen matrix invasion assay 109
 5.2.4 Effect of polyphenolic compounds on gelatin substrate gel electrophoresis 110
 5.2.5 Effect of polyphenolic compounds on tumour cell adhesion to collagen matrix 110
 5.2.6 Effect of polyphenolic compounds on tumour cell motility 111
5.3 RESULTS 111
 5.3.1 Effect of polyphenolic compounds on collagen matrix invasion assay 111
 5.3.2 Effect of polyphenolic compounds on gelatin substrate gel electrophoresis 116
 5.3.3 Effect of polyphenolic compounds on adhesion of B16F-10 cells to collagen matrix 118
 5.2.7 Effect of polyphenolic compounds on B16F-10 cell motility 118
5.4 DISCUSSION 118

6.0 STUDIES ON ANTICARCINOGENIC ACTIVITY OF POLYPHENOLIC COMPOUNDS IN MICE

6.1 INTRODUCTION 120
6.2 MATERIALS AND METHODS

6.2.1 Animal

6.2.2 Compounds

6.2.3 Effect of polyphenolic compounds on methylcholanthrene induced chemical carcinogenesis

6.2.4 Effect of polyphenolic compounds on two stage carcinogenesis

6.3 RESULTS

6.3.1 Effect of polyphenolic compounds on the development of sarcoma induced by methylcholanthrene

6.3.2 Effect of polyphenolic compounds on the survival of sarcoma bearing animals

6.3.3 Effect of polyphenolic compounds on two stage carcinogenesis

6.3.4 Effect of polyphenolic compounds on the collagen deposition during two stage carcinogenesis

6.4 DISCUSSION

7.0 IMMUNOLOGICAL MECHANISM OF ACTION OF POLYPHENOLIC COMPOUNDS IN MICE

7.1 INTRODUCTION

7.2 MATERIALS AND METHODS

7.2.1 Test Compounds

7.2.2 Animals

7.2.3 Determination of circulating antibody titre

7.2.4 Determination of antibody producing cells
7.2.5 Effect of polyphenolic compounds on the production of TNF-α by macrophages 133
7.2.6 Effect of polyphenolic compounds on the serum TNF-α levels in metastatic tumour bearing animals 134

7.3 RESULTS
7.3.1 Effect of polyphenolic compounds on circulating antibody titre 135
7.3.2 Effect of polyphenolic compounds on antibody producing cells 135
7.3.3 Effect of polyphenolic compounds on macrophage activation 135
7.3.4 Effect of polyphenolic compounds on the serum TNF-α production in metastatic tumour bearing animals 135

7.4 DISCUSSION 138

8.0 STUDIES ON THE ANTIMETASTATIC ACTIVITIES OF ANTIINFLAMMATORY AGENTS IN MICE

8.1 INTRODUCTION 142
8.2 MATERIALS AND METHODS 143
8.2.1 Animals 143
8.2.2 Cell line 143
8.2.3 Test compounds 143
8.2.4 Effect of antiinflammatory agents in the inhibition of lung tumour nodule formation 143
8.2.5 Statistical analysis 144
8.3 RESULTS

8.3.1 Effect of antiinflammatory agents on the inhibition of lung metastasis

8.3.2 Effect of antiinflammatory agents on the survival rate of metastatic tumour bearing animals

8.3.3 Effect of antiinflammatory agents on the lung collagen hydroxy proline content

8.3.4 Effect of antiinflammatory agents on serum sialic acid level

8.3.5 Histopathological analysis

8.4 DISCUSSION

9.0 ANTI-CARCINOGENIC AND ANTIMETASTATIC ACTIVITY OF RASAYANAS

9.1 INTRODUCTION

9.2 MATERIALS AND METHODS

9.2.1 Animals

9.2.2 Cell line

9.2.3 Materials

9.2.4 Determination of the effect of Rasayanas in the inhibition of lung tumour nodule formation and survival

9.2.5 Effect of Brahma Rasayana on the development of methylcholanthrene induced chemical carcinogenesis
9.3 RESULTS

9.3.1 Effect of Rasayanas on the inhibition of lung tumour nodule formation 152
9.3.2 Effect of Rasayanas on the survival of metastatic tumour bearing animals 152
9.3.3 Effect of Rasayanas on the lung collagen hydroxyproline content 155
9.3.4 Effect of Rasayanas on the serum sialic acid level 155
9.3.5 Histopathological analysis 157
9.3.6 Effect of Brahma Rasayana administration on sarcoma development 157
9.3.7 Effect of Brahma Rasayana treatment on the survival of animal injected with methylcholanthrene 157

9.4 DISCUSSION 162

10.0 SUMMARY AND CONCLUSION 164

11.0 BIBLIOGRAPHY 172