List of Figures

1.1 On-off time-encoding using a one-dimensional code for unipolar CDMA
 (a) data bits ‘10’ (b) transmitted coded data using a one-dimensional
 code ‘101000’ for bit ‘1’. .. 2

1.2 A generalized star connected fiber-optic cdma system. 5

1.3 Optical tapped delay line encoder. .. 7

1.4 Spectral encoder. .. 8

1.5 Wavelength-time encoder... 12

1.6 Encoding using a two-dimensional code... 15

1.7 Principle of Successive Interference Cancellation Receiver. 18

1.8 Principle of Differential detection... 20

2.1 Conversion of 1-D Golomb ruler to 2-D Matrix Code (based on Mendez
 et al. (2000). The rows of the matrix represent eight wavelengths. The
 four time chips (the columns of the matrix) carry the wavelengths $\lambda_1, \lambda_3,$
 λ_6, λ_7 respectively). .. 31

2.2 Topologies in OptSIM for (a) Four-user model of optical CDMA system
 (b) Wavelength/Time encoder (decoder). .. 32

2.3 (a) Transmitter block diagram for second system with antipodal signaling
 (b) Principle of differential detection in the receiver. 33

2.4 BER vs. Link Length with four simultaneous users for (a) differential
 detection (b) direct detection (c) BER of the users with poor BER
 performance for the two systems respectively. .. 36-37

3.1 An example of the 3-D SPDD code of weight = 4 based on golomb ruler
 [1 3 6 7] of order 4. It shows four planes each of weight one. $W \times TS = 16$ has been used. ... 42

3.2 (a) Representation of the pulses in the SPDD code (Group I) of Figure
 3.1. (b) A code from the Group II codes of SPDD code set. The different
 1’s are on the respective planes. ... 43
3.3 Procedure for generating the complete code set of Group I codes from the code I. Total codes are $W \times \text{(no. of space channels)} = 4 \times 4 = 16$.

3.4 Mathematical representation of the procedure for generating the complete code set of Group I of SPDD code family based on Golomb ruler $[g_1 \; g_2 \; g_3 \; g_4]$ of order ‘4’, generated using a downward row-shift s_s and a plane-shift p_s.

3.5 Cross-correlation at the output of unmatched decoder. 3x4x4 code and 4x3x4 code satisfy the unity constraint whereas 3x3x4 code exceeds the unity cross-correlation constraint.

3.6 BER performance of SPDD users: (a) with the increase in number of time slots T keeping W & Space channels fixed and (b) with the effect of increase in number of wavelengths W keeping T & Space channels fixed.

3.7 BER performance of SPDD users: (a) with the increase in number of Space Channels keeping W & T fixed and (b) effect of increase of both W & T while space channels are kept constant.

3.8 Comparison of our proposed SPDD code with 2-D OOC code and the 3-D prime code. The 3-D SPDD code of order 8 & 9 are based on the distinct differences of Shearer (1998). Comparison of 3-D SPDD code (a) with 2-D OOC code of Shivaleela et al. (2005) (b) with 3-D prime codes.

3.9 3-D implementation of Encoder/Decoder for USER1. Two codes are assigned for 1-bit and 0-bit coding. Connections only for space channel_1 of user 1 are shown to reduce expanse of design; whereas the space channel group for USER1 either from 1-bit or the 0-bit encoder is connected to network space couplers SPx through the selection switches depending on the data bit. All the users are connected in the same fashion.

4.1 The first 3-D GRZI-BCDD code (Group I) with weight = 4 based on Golomb ruler $[1 \; 3 \; 6 \; 7]$ of order 4, $W \times T = 15$ has been used.
4.2 (a) Another representation of the pulses in the GRZI-BCDD code of Figure 1 (Group I). (b) A code from the Group II of GRZI-BCDD code set. '1's occupy same positions on all the planes...

4.3 BER performance of GRZI-BCDD codes improves with increase in the (a) number of wavelengths in the code, W, (b) number of time-chips in the code, T and (c) number of space channels. It also shows the performance for $W>T$ and $W<T$...

4.4 Comparison of 3-D GRZI-BCDD code with (a) 2-D W/T OOC code of Shivaleela et al. (2005) (b) 3-D prime S-W-T code...

4.5 2-D implementation of Encoder/Decoder for USER1 using AWG’s to encode the 1-bit and 0-bit...

5.1 Schematic Snapshot of 4-user system in OptSIM with DPSK-RZ format..

5.2 Schematic Snapshots of (a) Inside of transmitter in a user and (b) inside of an encoder (decoder) for the four user system shown in figure 5.1...

5.3 Received power vs. BER for CSRZ and DPSK-RZ formats. The fiber length is 50 Km. The non-linear effects are negligible and the signal is recovered by using a pre-amplifier. Launched power per user is -20 dBm and -16 dBm for CSRZ and DPSK-RZ with pre-amplifier gain varied from 6.5 to 0.5 dB.

5.4 Received power vs BER for CSRZ and DPSK-RZ formats when fiber length increases from 100 Kms to 300 Kms. The non-linear effects are negligible and the signal is recovered by using a pre-amplifier. Launched power per user is -21 dBm and -18 dBm for CSRZ and DPSK-RZ with pre-amplifier gain varied from 8.5 to 1.5 dB.

5.5 BER vs. fiber link length for CSRZ and DPSK-RZ with no non-linearities observed under low user transmitted powers.

5.6 BER vs. fiber link-length for CSRZ and DPSK-RZ. Transmitted power per user is -10.94 dBm and -7.84 dBm for CSRZ and DPSK-RZ.

5.7 BER vs. fiber link-length for CSRZ and DPSK-RZ. Transmitted power per user = -3 dBm for both systems.