List of Tables

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Table Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Types of solid state gas sensors</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Properties of ZnO</td>
<td>11</td>
</tr>
<tr>
<td>1.3</td>
<td>Properties of Indium Oxide</td>
<td>11</td>
</tr>
<tr>
<td>2.1</td>
<td>List of nanostructures synthesized by thermal oxidation technique.</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>ZnO nanostructures made by thermal oxidation</td>
<td>20</td>
</tr>
<tr>
<td>2.3</td>
<td>Gas sensing nanostructures prepared by thermal oxidation technique.</td>
<td>20</td>
</tr>
<tr>
<td>4.1</td>
<td>Lattice parameters, strain and crystallite size, elemental composition, and optical band gap and activation energy for thermally oxidized Zn films.</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>Lattice parameters, strain and crystallite size, elemental composition, optical band gap and activation energy for thermally oxidized In films.</td>
<td>56</td>
</tr>
<tr>
<td>4.3</td>
<td>Response and Recovery time of sensors for 500 ppm of vapors.</td>
<td>66</td>
</tr>
<tr>
<td>4.4</td>
<td>Comparison of ethanol sensing performance between In films thermally oxidized at temperature of 400 and 500 °C.</td>
<td>71</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison of ammonia sensing performance between In films thermally oxidized at temperature of 400 and 500 °C.</td>
<td>71</td>
</tr>
<tr>
<td>4.6</td>
<td>Lattice parameters, strain, crystallite size, optical band gap and activation energy for Al-modified ZnO films.</td>
<td>77</td>
</tr>
<tr>
<td>4.7</td>
<td>EDAX data of Al-modified ZnO films.</td>
<td>77</td>
</tr>
<tr>
<td>4.8</td>
<td>Lattice parameters, strain, crystallite size, optical band gap and activation energy for Al modified In2O3 films.</td>
<td>82</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>EDAX data of Al-modified In$_2$O$_3$ films.</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Lattice parameters, strain, crystallite size, optical band gap and activation energy for Li modified ZnO films.</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Lattice parameters, strain and crystallite size, elemental composition, optical band gap and activation energy for Li modified In$_2$O$_3$ films.</td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>Lattice parameters, strain, crystallite size, optical band gap and activation energy for TsCuPc- modified ZnO films.</td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>Response of TsCuPc modified ZnO films to various gases at room temperature.</td>
<td></td>
</tr>
<tr>
<td>4.14</td>
<td>Lattice parameters, strain, crystallite size, optical band gap and activation energy for irradiated ZnO films.</td>
<td></td>
</tr>
<tr>
<td>4.15</td>
<td>Lattice parameters, strain, crystallite size, optical band gap and activation energy for irradiated In$_2$O$_3$ films.</td>
<td></td>
</tr>
</tbody>
</table>