LIST OF FIGURES

Figure 1.1 Unit cells of two common crystal structures exhibited by bulk III-V compound semiconductors: (a) zinc-blende and (b) wurtzite. Yellow (gray) balls represent III (V) atoms, respectively……………………………………………………………1

Figure 1.2 Research areas related to III-V compound semiconductor nanostructures……2

Figure 1.3 (GaN)$_{32}$ empty cage, (GaAs)$_{32}$ filled cage and (InN)$_{34}$ empty cage. All these cage structures consist of six- and four-membered rings. Dark (light) balls represent anion (cation) atoms, respectively……………………………………………………………5

Figure 1.4 A schematic representation of the structural phase transition from wurtzite to rock salt crystal structure in bulk III-N’s under high pressure…………………8

Figure 3.1 Schematic illustration of all-electron (solid lines) and pseudo- electron (dashed lines) potentials and their corresponding wave functions. r_c is the radius at which all-electron and pseudo-electron values match……………………………49

Figure 4.1 Optimized atomic structures of (GaN)$_n$ empty cages for $n=12$ (a), 13 (b), 28 (c), 32 (d), 34 (f), and the filled cage for (InN)$_{32}$ (e). Dark blue (light gray) balls represent anion (cation) atoms, respectively………………………………………………54

Figure 4.2 Optimized atomic structures of some selected III-V compound semiconductor nanoparticles: (a) (AlP)$_{12}$ empty cage, (b) (InAs)$_{12}$ empty cage, (c) (AlP)$_{13}$ filled cage, (d) (InAs)$_{13}$ filled cage, (e) (AlP)$_{32}$ filled cage, (f) (GaAs)$_{32}$ filled cage, (g) (GaP)$_{32}$ filled cage, (h) (AlP)$_{34}$ filled cage and (i) (InAs)$_{34}$ filled cage. Dark (light) balls represent anion (cation) atoms, respectively………………………………………………56

Figure 4.3 Bond angle trends in filled cage structures of (III-V)$_{13}$ compound semiconductor nanoparticles in common-cation and common-anion modes. Different colors show the variation of different bond angles. Each line in a graph shows the variation of a particular bond angle for the three systems………………60

Figure 4.4 HOMO–LUMO gap and binding energy per atom for different (III-V)$_n$ nanoparticles studied, $n=13$, 32 and 34. Note that x axis is not to scale…………63
Figure 4.5 Gaussian broadened total (red curve) and partial (blue curve for anion and green curve for cation) densities of states for some selected III-V nanoparticles. Vertical broken line shows the HOMO.............................64

Figure 5.1 Rock salt (a) and filled cage (b) structures of (InN)\textsubscript{32} nanoparticles with (InN)\textsubscript{28} cage and (InN)\textsubscript{4} inside. Green (pink) balls represent In (N) atoms. The total (red curve) and partial (blue curve for N and green curve for In) densities of states are shown for (InN)\textsubscript{32} rock salt structure as well as for filled cage isomer..69

Figure 5.2 The atomic structures of isomers (a, b) of (InN)\textsubscript{4}, (InN)\textsubscript{8}, (InN)\textsubscript{16}, and (InN)\textsubscript{64} nanoparticles. The energy difference between the lowest energy structure (taken as reference) and the other isomer is given in brackets in eV............71

Figure 5.3 The atomic structures of filled (a) and empty (b) cage structures of (InN)\textsubscript{60} nanoparticles. Gaussian broadened total and the partial densities of states for the filled cage isomer are also given..75

Figure 5.4 A schematic representation of the inherent tendency of (AgI)\textsubscript{32} rock salt structure to transform into filled cage structure, and in contrast to this (PbS)\textsubscript{32} filled cage structure of nanoparticles transform to rock salt structure. Dark pink (blue) atoms represent Ag (I) and dark green (light brown) atoms represent Pb (S) atoms, respectively...79

Figure 6.1 (a) Input bulk single bi-layer of GaN showing 0.638 Å buckling and 1.967 Å bond distance in the bi-layer, (b) Optimized bulk single bi-layer transforms into planar bi-layer with zero buckling and shortened bond distances (1.854 Å). (c) Optimized two bi-layers showing small buckling (0.078 Å and 0.079 Å) and increased bond distances (1.889 Å) as compared to single bi-layer. (d) and (e) are showing optimized five bi-layers of bulk fragment and planar films. Both are stable and bulk does not transform to planar phase. Pink (dark gray) balls represent N atoms and Cream (light grey) balls represent Ga atoms. All the numbers shown are in Å...84

Figure 6.2 Variation of inter-layer (two bi-layers and five bi-layers) and intra-layer (single bi-layer, two bi-layers, and five bi-layers) distances in III-N’s.............86
Figure 6.3 Buckling in two bi-layers and five bi-layers of AlN, GaN, and InN based on FHI-aims results. The buckling behaviour is significantly different in two and five bi-layers of InN as compared to AlN and GaN.

Figure 6.4 Band structure plots for the single and bi-layers of III-N’s. Band gap values based on FHI-aims results are also given in the plots. Zero of energy is set at the top of the valence band.

Figure 7.1 Different isomers of empty and filled cage structures for Eu and Eu:Si co-doped (GaN)$_n$ nanoparticles for the atomic sizes n=12 (a,b) and 13 (a-i). For n=12, all Ga sites are equivalent and so only one case is shown for Eu doping. For n=13, the lowest energy as well as other higher energy isomers (both empty and filled cages) are shown, and the energy (numbers in bracket in eV) of other isomers is given with respect to the lowest energy isomer.

Figure 7.2 Different empty and filled cage isomers of (GaN)$_{32}$ nanoparticles doped with Eu (a-d) and co-doped with Eu and Si (e-i). Red (violet) balls represent Eu and Si atoms, respectively.

Figure 7.3 The density of states for Eu and Si co-doped with Eu in GaN nanoparticles for the atomic sizes, n=12, 13, and 32 within GGA formalism. Vertical line shows the HOMO.

Figure 7.4 Density of states plots for Eu and Si co-doped with Eu in GaN nanoparticles for the sizes, n=12, 13, and 32 within GGA+U formalism. Vertical line shows the HOMO.

Figure 7.5 Charge density plots for Eu doped in (GaN)$_{12}$ nanoparticles with GGA (a), GGA+U (b) and Si co-doped with Eu in (GaN)$_{12}$ nanoparticles with GGA (c) and GGA+U (d), respectively.