List of table captions

Table 1.1: The different classes of amorphous semiconductors.

Table 1.2: The commonly studied compositions for phase change materials in optical data storage and PCRAM.

Table 4.1: Value of constant B, apparent activation energy for glass transition E_{gl}, n, m, activation energy for crystallization E_c(MK), E_c(ME) for Sn$_{10}$Sb$_{20}$Se$_{70-x}$Te$_x$ ($0 \leq X \leq 12$) compositions.

Table 4.2: Various thermal and glass stability parameters for Sn$_{10}$Sb$_{20}$Se$_{70-x4}$Te$_x$ ($0 \leq X \leq 12$) compositions.

Table 4.3: The values of d-spacing for various planes of different phases emerged during annealing for Sn$_{10}$Sb$_{20}$Se$_{70-X}$Te$_x$ glassy compositions.

Table 4.4: Various optical and single-oscillator fitting parameters for Sn$_{10}$Sb$_{20}$Se$_{70-x}$Te$_x$ compositions.

Table 4.5: Various optical and electrical parameters for as-prepared and annealed thin films of Sn$_{10}$Sb$_{20}$Se$_{70-x}$Te$_x$ compositions.

Table 4.6: Various photoconductivity parameters.

Table 4.7: The Phase transition temperature, Transition width, Resistivity ratio and Resistivity contrast for Sn$_{10}$Sb$_{20}$Se$_{70-x}$Te$_x$ semiconducting thin films.