Table of Contents

Abbreviations

CHAPTER 1 INTRODUCTION AND REVIEW OF LITERATURE  
1.1 V. CHOLERAE AND ITS PATHOGENESIS  
1.2 SUBTYPES OF V. CHOLERAE  
1.3 VIBRIO CHOLERAE GENOME  
1.4 QUORUM SENSING — WIDE SPREAD BACTERIAL COMMUNICATION SYSTEM  
1.5 QUORUM SENSING SIGNALING IN GRAM-NEGATIVE BACTERIA  
1.5.1 LuxI/LuxR-LIKE QUORUM SENSING SYSTEM  
1.5.1.1 AHLs structure  
1.5.1.2 Biodiversity of LuxI/LuxR quorum sensing systems  
1.5.2 V. HARRYI-TYPE QUORUM SENSING SYSTEMS  
1.5.2.1 The V. harveyi quorum sensing signaling cascade  
1.5.2.2 Ains/LuxM family of AHLs synthase  
1.5.2.3 Furanosyl borate diester (AI-2) and LuxS family  
1.5.2.4 CAI-1  
1.5.2.5 The phosphotransferase LuxU  
1.5.2.6 The sigm54-dependent regulator LuxO  
1.5.2.7 Small regulatory RNAs (sRNAs)  
1.5.2.8 The family of V. harveyi LuxR homologues are members of the TetR family  
1.5.2.9 Functions of V. harveyi LuxR homologues  
1.6 QUORUM SENSING SIGNALING IN GRAM-POSITIVE BACTERIA  
1.6.1 BACILLUS SUBTILIS: QUORUM SENSING SIGNALS  
1.6.2 STAPHYLOCOCCUS AUREUS AND THE ULTRA SPECIFICITY OF THE SIGNAL  
1.7 BACTERIAL CROSS-TALK  
1.8 BIOFILM- A COMPLICATED WELL MAINTAINED PROCESS  
1.8.1 BIOFILM MODE OF GROWTH  
1.8.2 INITIAL ADHESION OF BACTERIA  
1.8.3 BACTERIAL BEHAVIOR ON SURFACES  
1.8.4 EFFECT OF SURFACES ON ATTACHMENT  
1.8.5 EUKARYOTIC ORGANISMS IN BIOFILMS  
1.8.6 CELL-TO-CELL SIGNALING IN BACTERIAL BIOFILMS  
1.8.7 RESISTANCE OF BIOFILMS TO ANTIMICROBIALS  
1.9 BIOFILM FORMATION IN V. CHOLERAE  
1.9.1 ENVIRONMENTAL DETERMINANTS OF BIOFILM DEVELOPMENT IN V. CHOLERAE  
1.9.2 ROLE OF QUORUM SENSING IN BIOFILM FORMATION IN VIBRIO CHOLERAE  
1.10 SIGNIFICANCE OF THE PRESENT STUDY
CHAPTER 2 MATERIALS AND METHODS

2.1 MATERIALS

2.1.1 Bacterial strains
2.1.2 Plasmids
2.1.3 Primers used in study
2.1.4 Chemicals
2.1.5 Antibiotics
2.1.6 Media
2.1.7 Antibodies
2.1.8 Buffers and solutions used for recombinant DNA work
2.1.9 Solutions for Southern Blotting and Hybridization
2.1.10 A) Buffers and solutions for analysis of protein
2.1.10 B) Buffers and solutions for detection of protein
2.1.11 Buffers and solutions for LPS profiling

2.2 METHODS

2.2.1 Study period, sampling sites
2.2.2 Plasmid and strains constructed in the study
2.2.3 Biofilm assay
2.2.4 Lipopolysaccharide profiling
2.2.5 Protease assay
2.2.6 Hemagglutination assay
2.2.7 Confocal laser scanning microscopy of biofilm
2.2.8 Bacterial genomic DNA extraction
2.2.9 Isolation of plasmid DNA
2.2.10 Southern Blotting and hybridization
2.2.11 Polymerase chain reaction
2.2.12 Restriction endonuclease digestion
2.2.13 Agarose gel electrophoresis
2.2.14 Purification of DNA fragment from agarose gels
2.2.15 DNA sequencing and analysis
2.2.16 Nucleic acid manipulation
2.2.17 Ligation
2.2.18 Preparation of competent cells and transformation in E. coli
2.2.19 Transformation in Vibrio cholerae
2.2.20 Bacterial conjugation
2.2.21 Protein estimation
2.2.22 SDS-page
2.2.23 Western Blotting
2.2.24 Denaturing gradient gel electrophoresis (DGGE)
2.2.25 Growth experiment
2.2.26 Bioinformatics analysis
2.2.27 Data analysis
CHAPTER 3 BIOFILM DEVELOPMENT STUDIES IN NON-O1, NON-O139 V. CHOLERAE  58-72

INTRODUCTION  58
3.1 BIOFILM FORMATION ON ABIOTIC SURFACES BY NON O1, NON O139 V. CHOLERAE  59
   3.1.1 BIOFILM FORMATION ON BOROSILICATE GLASS SURFACE  60
   3.1.2 BIOFILM FORMATION ON HYDROPHOBIC SURFACES  61
3.2 BIOFILM FORMATION STUDIES ON NON O1, NON O139 V. CHOLERAE IN DEFINED SEA WATER (DSW)  61
3.3 LIPOPOLYSACCHARIDE (LPS) PROFILING OF NON-O1, NON-O139 V. CHOLERAE  63
3.4 EFFECT OF IRON ON BIOFILM FORMATION  63
3.5 CONFOCAL LASER SCANNING MICROSCOPIC ANALYSIS OF BIOFILM FORMATION  65
3.6 HEMAGGLUTININ/PROTEASE (HAP) ACTIVITY OF NON-O1, NON-O139 V.CHOLERAE  67
DISCUSSION  68

CHAPTER 4 MOLECULAR ANALYSIS OF GENES INVOLVED IN QUORUM SENSING AND BIOFILM FORMATION IN NON-O1, NON-O139 V. CHOLERAE  73-79

INTRODUCTION  73
4.1 luxO GENE RESTRICTION PATTERNS  74
4.2 RESTRICTION PATTERNS OF THE luxU GENE  74
4.3 ANALYSIS OF RESTRICTION PATTERN OF csrA  75
4.4 vpsR GENE RESTRICTION PATTERNS  75
4.5 vpsL GENE RESTRICTION PATTERNS  75
4.6 16S rRNA GENE SEQUENCE ANALYSIS OF PL61  76
DISCUSSION  77

CHAPTER 5 IDENTIFICATION OF CONSTITUTIVELY ACTIVE VARIANT OF LuxO IN NON-O1, NON-O139 V. CHOLERAE STRAIN PL91  80-87

INTRODUCTION  80
5.1. PROTEASE ASSAY AND FUNCTIONAL ANALYSIS OF hapR OF V. CHOLERAE PL91  80
5.2. MOLECULAR ANALYSIS OF THE luxO GENE FROM V. CHOLERAE STRAIN PL91  81
5.3. INSERTIONAL INACTIVATION OF THE luxO GENE IN V. CHOLERAE STRAIN PL91  82
5.4. INSERTIONAL INACTIVATION OF THE luxU GENE IN V. CHOLERAE STRAIN PL91  82
5.5 WESTERN BLOT OF THE CULTURE SUPERNATANT OF PL91-SVM  83
5.6 BIOFILM ASSAY OF PL91 ΔluxO AND ΔluxU MUTANTS  83
5.7 INSERTIONAL INACTIVATION OF THE csrA GENE IN V. CHOLERAE STRAIN PL91 AND PROTEASE ASSAY OF PL91-SM  83
5.8 OVEREXPRESSION OF CsrC IN V. CHOLERAE PL91 AND PROTEASE ASSAY OF PL91-SMC  84
5.9 OVEREXPRESSION OF CsrC IN V. CHOLERAE PL91-SC AND PROTEASE ASSAY OF PL91-SCL  84
5.10. BIOFILM ASSAY OF csrA MUTANTS OF PL91  84
5.11. GROWTH IN TRYPOTNE BROTH  85
DISCUSSION  85
Summary  88-92
Bibliography  93-106
Publication