TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xxi</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DIGITAL IMAGE</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>IMAGE COMPRESSION</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.3.1 Data redundancy</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.3.1.1 Coding redundancy</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.3.1.2 Interpixel redundancy</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.3.1.3 Psychovisual redundancy</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.3.2 Image compression system</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.3.3 Lossless and lossy image compression</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>PERFORMANCE METRICS</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>ORGANIZATION OF THE THESIS</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>CONCLUSION</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.1 INTRODUCTION</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.2 LOSSLESS IMAGE COMPRESSION TECHNIQUES</td>
<td>12</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>2.3</td>
<td>LOSSY IMAGE COMPRESSION</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TECHNIQUES</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>CONCLUSION</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>HIGH PERFORMANCE 1–LEVEL DWT–JPEG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BASED HYBRID IMAGE COMPRESSION ALGORITHM</td>
<td>20</td>
</tr>
<tr>
<td>3.1</td>
<td>INTRODUCTION</td>
<td>20</td>
</tr>
<tr>
<td>3.2</td>
<td>TRANSFORM CODING</td>
<td>20</td>
</tr>
<tr>
<td>3.3</td>
<td>ORTHOGONAL AND UNITARY TRANSFORM CODING</td>
<td>21</td>
</tr>
<tr>
<td>3.4</td>
<td>SUBBAND TRANSFORM CODING</td>
<td>22</td>
</tr>
<tr>
<td>3.5</td>
<td>PROPOSED DWT-JPEG HYBRID IMAGE COMPRESSION</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>ALGORITHM</td>
<td></td>
</tr>
<tr>
<td>3.5.1</td>
<td>Compression algorithm</td>
<td>26</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Decompression algorithm</td>
<td>27</td>
</tr>
<tr>
<td>3.6</td>
<td>RESULTS AND DISCUSSION</td>
<td>27</td>
</tr>
<tr>
<td>3.7</td>
<td>CONCLUSION</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>STATE-BASED DYNAMIC MULTI-ALPHABET</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ARITHMETIC CODING FOR IMAGE COMPRESSION</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>INTRODUCTION</td>
<td>39</td>
</tr>
<tr>
<td>4.2</td>
<td>ENTROPY CODING</td>
<td>39</td>
</tr>
<tr>
<td>4.3</td>
<td>STATISTICAL CODING</td>
<td>40</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Huffman coding</td>
<td>40</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Standard arithmetic coding</td>
<td>41</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>4.3.3</td>
<td>AVC H.264 standard</td>
<td>41</td>
</tr>
<tr>
<td>4.3.4</td>
<td>AVS standard</td>
<td>42</td>
</tr>
<tr>
<td>4.4</td>
<td>PROPOSED STATE-BASED DYNAMIC MULTI-ALPHABET ARITHMETIC CODING ALGORITHM</td>
<td>42</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Encoding algorithm</td>
<td>43</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Decoding algorithm</td>
<td>47</td>
</tr>
<tr>
<td>4.5</td>
<td>OPTIMAL VALUES</td>
<td>50</td>
</tr>
<tr>
<td>4.6</td>
<td>ANALYSIS OF THE PROPOSED ALGORITHM</td>
<td>54</td>
</tr>
<tr>
<td>4.7</td>
<td>RESULTS AND DISCUSSION</td>
<td>57</td>
</tr>
<tr>
<td>4.8</td>
<td>CONCLUSION</td>
<td>76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>RATIO-MODIFIED BLOCK TRUNCATION CODING FOR REDUCED BITRATES</th>
<th>77</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>INTRODUCTION</td>
<td>77</td>
</tr>
<tr>
<td>5.2</td>
<td>MODIFIED BLOCK TRUNCATION CODING</td>
<td>77</td>
</tr>
<tr>
<td>5.3</td>
<td>PROPOSED RATIO-MODIFIED BTC ALGORITHMS</td>
<td>78</td>
</tr>
<tr>
<td>5.3.1</td>
<td>RMBTC encoding algorithm</td>
<td>79</td>
</tr>
<tr>
<td>5.3.2</td>
<td>RMBTC decoding algorithm</td>
<td>80</td>
</tr>
<tr>
<td>5.3.3</td>
<td>RMBTC-BPC encoding algorithm</td>
<td>80</td>
</tr>
<tr>
<td>5.3.4</td>
<td>RMBTC-BPC decoding algorithm</td>
<td>81</td>
</tr>
<tr>
<td>5.4</td>
<td>RESULTS AND DISCUSSION</td>
<td>82</td>
</tr>
<tr>
<td>5.5</td>
<td>CONCLUSION</td>
<td>95</td>
</tr>
<tr>
<td>CHAPTER NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>6</td>
<td>MODIFIED LOG-EXP TRANSFORM BASED IMAGE COMPRESSION ALGORITHM</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>6.1 INTRODUCTION</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>6.2 LOG-EXP TRANSFORM BASED IMAGE COMPRESSION ALGORITHM</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>6.3 PROPOSED MODIFIED LOG-EXP TRANSFORM BASED IMAGE COMPRESSION ALGORITHM</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>6.4 RESULTS AND DISCUSSION</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>6.5 FPGA IMPLEMENTATION</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>6.5.1 Logarithmic transform block</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>6.5.2 Repeat reduction block</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>6.5.3 Standard arithmetic coding block</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>6.6 CONCLUSION</td>
<td>113</td>
</tr>
<tr>
<td>7</td>
<td>SUMMARY AND CONCLUSION</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>REFERENCES</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>LIST OF PUBLICATIONS</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>VITAE</td>
<td>121</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Raw image and video data bitrate requirements</td>
<td>3</td>
</tr>
<tr>
<td>3.1</td>
<td>Daubechies 9 / 7 filter coefficients</td>
<td>24</td>
</tr>
<tr>
<td>3.2</td>
<td>PSNR (dB) vs bitrate (bpp) for lena 512 × 512 image</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>PSNR (dB) vs bitrate (bpp) for barbara 512 × 512 image</td>
<td>31</td>
</tr>
<tr>
<td>3.4</td>
<td>PSNR (dB) vs bitrate (bpp) for goldhill 512 × 512 image</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>Threshold vs CR for flower 256 × 256 image (SymbolPerMessage = 65536)</td>
<td>51</td>
</tr>
<tr>
<td>4.2</td>
<td>Threshold vs CR for lena 256 × 256 image (SymbolPerMessage = 65536)</td>
<td>52</td>
</tr>
<tr>
<td>4.3</td>
<td>Threshold vs CR for milk 256 × 256 image (SymbolPerMessage = 65536)</td>
<td>52</td>
</tr>
<tr>
<td>4.4</td>
<td>Threshold vs CR for babboon 256 × 256 image (SymbolPerMessage = 65536)</td>
<td>53</td>
</tr>
<tr>
<td>4.5</td>
<td>Threshold vs CR for couple 256 × 256 image (SymbolPerMessage = 65536)</td>
<td>53</td>
</tr>
<tr>
<td>4.6</td>
<td>CR values for the five test images using Huffman, standard arithmetic coding and state-based arithmetic coding</td>
<td>58</td>
</tr>
<tr>
<td>4.7</td>
<td>CR vs PSNR (dB) for flower 256 × 256 image</td>
<td>74</td>
</tr>
<tr>
<td>4.8</td>
<td>CR vs PSNR (dB) for lena 256 × 256 image</td>
<td>74</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.9</td>
<td>CR vs PSNR (dB) for milk 256 × 256 image</td>
<td>75</td>
</tr>
<tr>
<td>4.10</td>
<td>CR vs PSNR (dB) for baboon 256 × 256 image</td>
<td>75</td>
</tr>
<tr>
<td>4.11</td>
<td>CR vs PSNR (dB) for couple 256 × 256 image</td>
<td>76</td>
</tr>
<tr>
<td>5.1</td>
<td>PSNR (dB) vs bitrate (bpp) for the four test images</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>using Algorithm 1 and RMBTC algorithm</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>PSNR (dB) vs bitrate (bpp) for the four test images</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>using Algorithm 2, Algorithm 3 and RMBTC-BPC algorithm</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>PSNR (dB) vs bitrate (bpp) for lena 512 × 512 image</td>
<td>103</td>
</tr>
<tr>
<td>6.2</td>
<td>PSNR (dB) vs bitrate (bpp) for pepper 512 × 512 image</td>
<td>103</td>
</tr>
<tr>
<td>6.3</td>
<td>PSNR (dB) vs bitrate (bpp) for mandrill 512 × 512 image</td>
<td>104</td>
</tr>
<tr>
<td>6.4</td>
<td>JPEG results for three test images</td>
<td>104</td>
</tr>
<tr>
<td>6.5</td>
<td>FPGA synthesis report of proposed modified Log-Exp algorithm</td>
<td>113</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>A general image compression system model</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Source encoder model</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Source decoder model</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>Pyramidal DWT decomposition (Analysis Filter Bank)</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>Pyramidal DWT reconstruction (Synthesis Filter Bank)</td>
<td>23</td>
</tr>
<tr>
<td>3.3</td>
<td>1-level wavelet decomposition of barbara 512 × 512 image</td>
<td>24</td>
</tr>
<tr>
<td>3.4</td>
<td>PSNR vs bitrate for lena 512 × 512 image</td>
<td>29</td>
</tr>
<tr>
<td>3.5</td>
<td>PSNR vs bitrate for barbara 512 × 512 image</td>
<td>29</td>
</tr>
<tr>
<td>3.6</td>
<td>PSNR vs bitrate for goldhill 512 × 512 image</td>
<td>30</td>
</tr>
<tr>
<td>3.7</td>
<td>Original lena 512 × 512 image</td>
<td>32</td>
</tr>
<tr>
<td>3.8</td>
<td>Reconstructed lena 512 × 512 image at 0.3 bpp using JPEG standard (PSNR = 31.7 dB)</td>
<td>32</td>
</tr>
<tr>
<td>3.9</td>
<td>Reconstructed lena 512 × 512 image at 0.3 bpp using SPIHT coding algorithm (PSNR = 34.9 dB)</td>
<td>33</td>
</tr>
<tr>
<td>3.10</td>
<td>Reconstructed lena 512 × 512 image at 0.3 bpp using proposed DWT-JPEG algorithm (PSNR = 36.5 dB)</td>
<td>33</td>
</tr>
<tr>
<td>3.11</td>
<td>Original barbara 512 × 512 image</td>
<td>34</td>
</tr>
<tr>
<td>3.12</td>
<td>Reconstructed barbara 512 × 512 image at 0.3 bpp using JPEG standard (PSNR = 25.1 dB)</td>
<td>34</td>
</tr>
<tr>
<td>3.13</td>
<td>Reconstructed barbara 512 × 512 image at 0.3 bpp using SPIHT coding algorithm (PSNR = 28.4 dB)</td>
<td>35</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>3.14</td>
<td>Reconstructed barbara 512×512 image at 0.3 bpp using proposed DWT-JPEG algorithm (PSNR = 33.2 dB)</td>
<td>35</td>
</tr>
<tr>
<td>3.15</td>
<td>Original goldhill 512×512 image</td>
<td>36</td>
</tr>
<tr>
<td>3.16</td>
<td>Reconstructed goldhill 512×512 image at 0.3 bpp using JPEG standard (PSNR = 29.2 dB)</td>
<td>36</td>
</tr>
<tr>
<td>3.17</td>
<td>Reconstructed goldhill 512×512 image at 0.3 bpp using SPIHT coding algorithm (PSNR = 31.3 dB)</td>
<td>37</td>
</tr>
<tr>
<td>3.18</td>
<td>Reconstructed goldhill 512×512 image at 0.3 bpp using proposed DWT-JPEG algorithm (PSNR = 34.4 dB)</td>
<td>37</td>
</tr>
<tr>
<td>4.1</td>
<td>CR vs Threshold (SymbolPerMessage = 65536)</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>Original flower 256×256 image</td>
<td>59</td>
</tr>
<tr>
<td>4.3</td>
<td>Reconstructed flower 256×256 image using JPEG with Huffman coding technique (PSNR = 32.76 dB, CR = 14.48)</td>
<td>59</td>
</tr>
<tr>
<td>4.4</td>
<td>Reconstructed flower 256×256 image in AVS standard using C-2D-VLC technique (PSNR = 32.46 dB, CR = 12.91)</td>
<td>60</td>
</tr>
<tr>
<td>4.5</td>
<td>Reconstructed flower 256×256 image in AVC standard using CABAC technique (PSNR = 32.46 dB, CR = 16.84)</td>
<td>60</td>
</tr>
<tr>
<td>4.6</td>
<td>Reconstructed flower 256×256 image using JPEG with standard arithmetic coding technique (PSNR = 32.76 dB, CR = 19.76)</td>
<td>61</td>
</tr>
<tr>
<td>4.7</td>
<td>Reconstructed flower 256×256 image using JPEG with proposed technique (PSNR = 32.76 dB, CR = 26.03)</td>
<td>61</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>4.8</td>
<td>Original lena 256×256 image</td>
<td>62</td>
</tr>
<tr>
<td>4.9</td>
<td>Reconstructed lena 256×256 image using JPEG with Huffman coding technique (PSNR = 38.48 dB, CR = 3.98)</td>
<td>62</td>
</tr>
<tr>
<td>4.10</td>
<td>Reconstructed lena 256×256 image in AVS standard using C-2D-VLC technique (PSNR = 38.3 dB, CR = 2.93)</td>
<td>63</td>
</tr>
<tr>
<td>4.11</td>
<td>Reconstructed lena 256×256 image in AVC standard using CABAC technique (PSNR = 38.3 dB, CR = 3.67)</td>
<td>63</td>
</tr>
<tr>
<td>4.12</td>
<td>Reconstructed flower 256×256 image using JPEG with standard arithmetic coding technique (PSNR = 38.48 dB, CR = 4.50)</td>
<td>64</td>
</tr>
<tr>
<td>4.13</td>
<td>Reconstructed lena 256×256 image using JPEG with proposed technique (PSNR = 38.48 dB, CR = 6.13)</td>
<td>64</td>
</tr>
<tr>
<td>4.14</td>
<td>Original milk 256×256 image</td>
<td>65</td>
</tr>
<tr>
<td>4.15</td>
<td>Reconstructed milk 256×256 image using JPEG with Huffman coding technique (PSNR = 36.84 dB, CR = 21.55)</td>
<td>65</td>
</tr>
<tr>
<td>4.16</td>
<td>Reconstructed milk 256×256 image in AVS standard using C-2D-VLC technique (PSNR = 36.46 dB, CR = 13.80)</td>
<td>66</td>
</tr>
<tr>
<td>4.17</td>
<td>Reconstructed milk 256×256 image in AVC standard using CABAC technique (PSNR = 36.46 dB, CR = 18.86)</td>
<td>66</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>4.18</td>
<td>Reconstructed milk 256×256 image using JPEG with standard arithmetic coding technique (PSNR = 36.84 dB, CR = 30.12)</td>
<td>67</td>
</tr>
<tr>
<td>4.19</td>
<td>Reconstructed milk 256×256 image using JPEG with proposed technique (PSNR = 36.84 dB, CR = 40.52)</td>
<td>67</td>
</tr>
<tr>
<td>4.20</td>
<td>Original baboon 256×256 image</td>
<td>68</td>
</tr>
<tr>
<td>4.21</td>
<td>Reconstructed baboon 256×256 image using JPEG with Huffman coding technique (PSNR = 30.46 dB, CR = 11.96)</td>
<td>68</td>
</tr>
<tr>
<td>4.22</td>
<td>Reconstructed baboon 256×256 image in AVS standard using C-2D-VLC technique (PSNR = 30.24 dB, CR = 8.71)</td>
<td>69</td>
</tr>
<tr>
<td>4.23</td>
<td>Reconstructed baboon 256×256 image in AVC standard using CABAC technique (PSNR = 30.24 dB, CR = 12.01)</td>
<td>69</td>
</tr>
<tr>
<td>4.24</td>
<td>Reconstructed baboon 256×256 image using JPEG with standard arithmetic coding technique (PSNR = 30.46 dB, CR = 17.47)</td>
<td>70</td>
</tr>
<tr>
<td>4.25</td>
<td>Reconstructed baboon 256×256 image using JPEG with proposed technique (PSNR = 30.46 dB, CR = 22.06)</td>
<td>70</td>
</tr>
<tr>
<td>4.26</td>
<td>Original couple 256×256 image</td>
<td>71</td>
</tr>
<tr>
<td>4.27</td>
<td>Reconstructed couple 256×256 image using JPEG with Huffman coding technique (PSNR = 37.30 dB, CR = 3.32)</td>
<td>71</td>
</tr>
</tbody>
</table>
4.28 Reconstructed couple 256 × 256 image in AVS standard using C-2D-VLC technique (PSNR = 37.77 dB, CR = 2.92) 72
4.29 Reconstructed couple 256 × 256 image in AVC standard using CABAC technique (PSNR = 37.77 dB, CR = 3.36) 72
4.30 Reconstructed couple 256 × 256 image using JPEG with standard arithmetic coding technique (PSNR = 37.30 dB, CR = 3.83) 73
4.31 Reconstructed couple 256 × 256 image using JPEG with proposed technique (PSNR = 37.30 dB, CR = 5.21) 73
5.1 Bitplane for a 4 × 4 block 81
5.2 Reconstructed lena 512 × 512 image using Algorithm 1 (PSNR = 37.86 dB, CR = 1.94) 85
5.3 Reconstructed lena 512 × 512 image using proposed RMBTC algorithm (PSNR = 36.93 dB, CR = 1.59) 85
5.4 Reconstructed barbara 512 × 512 image using Algorithm 1 (PSNR = 34.31 dB, CR = 1.96) 86
5.5 Reconstructed barbara 512 × 512 image using proposed RMBTC algorithm (PSNR = 33.94 dB, CR = 1.63) 86
5.6 Reconstructed mandrill 512 × 512 image using Algorithm 1 (PSNR = 33.35 dB, CR = 1.91) 87
5.7 Reconstructed mandrill 512 × 512 image using proposed RMBTC algorithm (PSNR = 32.96 dB, CR = 1.60) 87
<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8</td>
<td>Reconstructed goldhill 512 × 512 image using Algorithm 1 (PSNR = 36.77 dB, CR = 1.94)</td>
<td>88</td>
</tr>
<tr>
<td>5.9</td>
<td>Reconstructed goldhill 512 × 512 image using proposed RMBTC algorithm (PSNR = 36.07 dB, CR = 1.59)</td>
<td>88</td>
</tr>
<tr>
<td>5.10</td>
<td>Reconstructed lena 512 × 512 image using Algorithm 2 (PSNR = 33.02 dB, CR = 1.09)</td>
<td>89</td>
</tr>
<tr>
<td>5.11</td>
<td>Reconstructed lena 512 × 512 image using Algorithm 3 (PSNR = 33.32 dB, CR = 1.09)</td>
<td>89</td>
</tr>
<tr>
<td>5.12</td>
<td>Reconstructed lena 512 × 512 image using proposed RMBTC-BPC algorithm (PSNR = 35.04 dB, CR = 1.09)</td>
<td>90</td>
</tr>
<tr>
<td>5.13</td>
<td>Reconstructed barbara 512 × 512 image using Algorithm 2 (PSNR = 31.87 dB, CR = 1.13)</td>
<td>90</td>
</tr>
<tr>
<td>5.14</td>
<td>Reconstructed barbara 512 × 512 image using Algorithm 3 (PSNR = 32.10 dB, CR = 1.13)</td>
<td>91</td>
</tr>
<tr>
<td>5.15</td>
<td>Reconstructed barbara 512 × 512 image using proposed RMBTC-BPC algorithm (PSNR = 32.47 dB, CR = 1.13)</td>
<td>91</td>
</tr>
<tr>
<td>5.16</td>
<td>Reconstructed mandrill 512 × 512 image using Algorithm 2 (PSNR = 30.75 dB, CR = 1.10)</td>
<td>92</td>
</tr>
<tr>
<td>5.17</td>
<td>Reconstructed mandrill 512 × 512 image using Algorithm 3 (PSNR = 30.84 dB, CR = 1.10)</td>
<td>92</td>
</tr>
<tr>
<td>5.18</td>
<td>Reconstructed mandrill 512 × 512 image using proposed RMBTC-BPC algorithm (PSNR = 31.47 dB, CR = 1.10)</td>
<td>93</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>5.19</td>
<td>Reconstructed goldhill 512 × 512 image using Algorithm 2 (PSNR = 32.47 dB, CR = 1.09)</td>
<td>93</td>
</tr>
<tr>
<td>5.20</td>
<td>Reconstructed goldhill 512 × 512 image using Algorithm 3 (PSNR = 32.38 dB, CR = 1.09)</td>
<td>94</td>
</tr>
<tr>
<td>5.21</td>
<td>Reconstructed goldhill 512 × 512 image using proposed RMBTC-BPC algorithm (PSNR = 33.68 dB, CR = 1.09)</td>
<td>94</td>
</tr>
<tr>
<td>6.1</td>
<td>Original Log-Exp image compression system</td>
<td>98</td>
</tr>
<tr>
<td>6.2</td>
<td>Snake scan</td>
<td>99</td>
</tr>
<tr>
<td>6.3</td>
<td>Repeat reduction</td>
<td>99</td>
</tr>
<tr>
<td>6.4</td>
<td>Modified Log-Exp image compression system</td>
<td>100</td>
</tr>
<tr>
<td>6.5</td>
<td>Reconstructed lena 512 × 512 image using original Log-Exp algorithm (PSNR = 42.36 dB, CR = 8.95)</td>
<td>105</td>
</tr>
<tr>
<td>6.6</td>
<td>Reconstructed lena 512 × 512 image using modified Log-Exp algorithm with standard arithmetic coding (PSNR = 42.36 dB, CR = 9.01)</td>
<td>105</td>
</tr>
<tr>
<td>6.7</td>
<td>Reconstructed lena 512 × 512 image using JPEG standard (PSNR = 42.67 dB, CR = 4.39)</td>
<td>106</td>
</tr>
<tr>
<td>6.8</td>
<td>Reconstructed pepper 512 × 512 image using original Log-Exp algorithm (PSNR = 42.31 dB, CR = 8.44)</td>
<td>106</td>
</tr>
<tr>
<td>6.9</td>
<td>Reconstructed lena 512 × 512 image using modified Log-Exp algorithm with standard arithmetic coding (PSNR = 42.31 dB, CR = 8.47)</td>
<td>107</td>
</tr>
<tr>
<td>6.10</td>
<td>Reconstructed lena 512 × 512 image using JPEG standard (PSNR = 42.19 dB, CR = 3.31)</td>
<td>107</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>6.11</td>
<td>Reconstructed mandrill 512×512 image using original Log-Exp algorithm (PSNR = 42.30 dB, CR = 8.38)</td>
<td>108</td>
</tr>
<tr>
<td>6.12</td>
<td>Reconstructed mandrill 512×512 image using modified Log-Exp algorithm with standard arithmetic coding (PSNR = 42.30 dB, CR = 8.42)</td>
<td>108</td>
</tr>
<tr>
<td>6.13</td>
<td>Reconstructed mandrill 512×512 image using JPEG standard (PSNR = 43.83 dB, CR = 2.99)</td>
<td>109</td>
</tr>
<tr>
<td>6.14</td>
<td>Logarithmic transform block</td>
<td>111</td>
</tr>
<tr>
<td>6.15</td>
<td>Repeat reduction block</td>
<td>111</td>
</tr>
<tr>
<td>6.16</td>
<td>Standard arithmetic coding block</td>
<td>112</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(j, m, n)</td>
<td>Approximation wavelet subband coefficients at level j and coordinate (m, n)</td>
</tr>
<tr>
<td>g(i, j)</td>
<td>Approximation of f(i, j)</td>
</tr>
<tr>
<td>L</td>
<td>Average number of bits required to represent encoded symbol</td>
</tr>
<tr>
<td>C(S_k)</td>
<td>Count of k(^{th}) symbol S_k</td>
</tr>
<tr>
<td>2\downarrow</td>
<td>Decimate by a factor of 2</td>
</tr>
<tr>
<td>W_D(j, m, n)</td>
<td>Diagonal detail wavelet subband coefficients at level j and coordinate (m, n)</td>
</tr>
<tr>
<td>E</td>
<td>Energy in 8 \times 8 pixel block</td>
</tr>
<tr>
<td>freq</td>
<td>Frequent state</td>
</tr>
<tr>
<td>h_H(i, j)</td>
<td>High-pass analysis filter bank coefficients</td>
</tr>
<tr>
<td>g_H(i, j)</td>
<td>High-pass synthesis filter bank coefficients</td>
</tr>
<tr>
<td>W_H(j, m, n)</td>
<td>Horizontal detail wavelet subband coefficients at level j and coordinate (m, n)</td>
</tr>
<tr>
<td>I(j + 1, m, n)</td>
<td>Image at level (j + 1) at coordinate (m, n)</td>
</tr>
<tr>
<td>infreq</td>
<td>Infrequent state</td>
</tr>
<tr>
<td>2\uparrow</td>
<td>Interpolate by a factor of 2</td>
</tr>
<tr>
<td>Level j</td>
<td>j(^{th}) level of wavelet decomposition</td>
</tr>
<tr>
<td>S_k</td>
<td>k(^{th}) symbol in alphabet</td>
</tr>
<tr>
<td>h_L(i, j)</td>
<td>Low-pass analysis filter bank coefficients</td>
</tr>
<tr>
<td>g_L(i, j)</td>
<td>Low-pass synthesis filter bank coefficients</td>
</tr>
<tr>
<td>Maxcount</td>
<td>Maximum value allowed for Count</td>
</tr>
<tr>
<td>n(S_k)</td>
<td>Number of bits required to encode k(^{th}) symbol S_k</td>
</tr>
<tr>
<td>Count</td>
<td>Number of occurrences of each symbol</td>
</tr>
</tbody>
</table>
nones - Number of ones in 4×4 block in bitplane

SymbolPerMessage - Number of symbols for which a single tag value is generated

$f(i, j)$ - Original image pixel at coordinate (i, j)

$p(S_k)$ - Probability of occurrence of k^{th} symbol S_k

(x_i, y_i, p_i) - Repeat reduction block output:

$x_i = \log$ value

$y_i = \text{Number of continuous occurrence of } x_i$

$p_i = \text{Probability of occurrence pattern } (x_i, y_i)$

$M \times N$ - Size of the image in number of rows and columns

Threshold - Value which causes rescaling of Count

$W_{V}(j, m, n)$ - Vertical detail wavelet subband coefficients at level j and coordinate (m, n)

$W_{i, j}$ - Wavelet coefficients at coordinate (i, j)

X_{avg} - 4×4 block average

X_{Havg} - 4×4 block higher average

X_{Lavg} - 4×4 block lower average

Abbreviations

AVC - Audio Video Coding

AVS - Audio Video coding Standard

bit - binary digit

bpp - bits per pixel

BTC - Block Truncation Coding

C-2D-VLC - Context-based – 2-Dimensional – Variable Length Coding

CABAC - Context Adaptive Binary Arithmetic Coding

CALIC - Context-based Adaptive Lossless Image Coding

CD-ROM - Compact Disk – Read Only Memory
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF</td>
<td>Cumulative Frequency</td>
</tr>
<tr>
<td>CR</td>
<td>Compression Ratio</td>
</tr>
<tr>
<td>dB</td>
<td>decibel</td>
</tr>
<tr>
<td>DCT</td>
<td>Discrete Cosine Transform</td>
</tr>
<tr>
<td>DWT</td>
<td>Discrete Wavelet Transform</td>
</tr>
<tr>
<td>EZW</td>
<td>Embedded Zerotree Wavelet</td>
</tr>
<tr>
<td>FAX</td>
<td>Facsimile Transmission</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field Programmable Gate Array</td>
</tr>
<tr>
<td>ITU-T</td>
<td>International Telecommunication Union – Telecommunication</td>
</tr>
<tr>
<td>CCITT</td>
<td>International Telegraph and Telephone Consultative Committee</td>
</tr>
<tr>
<td>JPEG</td>
<td>Joint Photographic Expert Group</td>
</tr>
<tr>
<td>Kbps</td>
<td>Kilo bits per second</td>
</tr>
<tr>
<td>LNS</td>
<td>Logarithmic Number System</td>
</tr>
<tr>
<td>Log-Exp</td>
<td>Logarithmic-Exponential Transform</td>
</tr>
<tr>
<td>MATLAB</td>
<td>Matrix Laboratory</td>
</tr>
<tr>
<td>Mbits</td>
<td>Mega bits</td>
</tr>
<tr>
<td>MB</td>
<td>Megabyte</td>
</tr>
<tr>
<td>MBTC</td>
<td>Modified Block Truncation Coding</td>
</tr>
<tr>
<td>MHz</td>
<td>Mega Hertz</td>
</tr>
<tr>
<td>MSB</td>
<td>Most Significant Bit</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Square Error</td>
</tr>
<tr>
<td>PSNR</td>
<td>Peak-Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>RMBTC</td>
<td>Ratio-Modified Block Truncation Coding</td>
</tr>
<tr>
<td>RMBTC-BPC</td>
<td>Ratio-Modified Block Truncation Coding with Bitplane Coding</td>
</tr>
<tr>
<td>SPIHT</td>
<td>Set Partitioning In Hierarchical Trees</td>
</tr>
<tr>
<td>TV</td>
<td>Television</td>
</tr>
<tr>
<td>VQ</td>
<td>Vector Quantization</td>
</tr>
</tbody>
</table>