LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>METHOD DEVELOPMENT AND VALIDATION OF GUANFACIN IN RAT PLASMA</td>
<td>38-83</td>
</tr>
<tr>
<td>4.1</td>
<td>Preparation of reagents and solvents</td>
<td>41</td>
</tr>
<tr>
<td>4.2</td>
<td>Preparation of stock solutions</td>
<td>42</td>
</tr>
<tr>
<td>4.3</td>
<td>Screening of Different batches of blank matrix Rat K$_2$EDTA Plasma) for interference free Guanfacin blank plasma</td>
<td>53</td>
</tr>
<tr>
<td>4.4</td>
<td>Limit of Quantification for analyte (Guanfacin)</td>
<td>54</td>
</tr>
<tr>
<td>4.5</td>
<td>Intra batch (Within-Batch) Accuracy and Precision for determination Guanfacin levels in Rat plasma</td>
<td>55</td>
</tr>
<tr>
<td>4.6</td>
<td>Inter batch (Between-Batch) Accuracy and Precision for determination Guanfacin levels in Rat plasma</td>
<td>57</td>
</tr>
<tr>
<td>4.7</td>
<td>Back-calculated standard concentrations from each calibration curve for Guanfacin in Rat plasma</td>
<td>59</td>
</tr>
<tr>
<td>4.8</td>
<td>Recovery of Analyte (Guanfacin) and Guanfacin 15N$_3$ 13C$_1$ from rat plasma</td>
<td>61</td>
</tr>
<tr>
<td>4.9</td>
<td>Assessment of Matrix Effect on determination of Guanfacin at MQC levels in rat plasma</td>
<td>63</td>
</tr>
<tr>
<td>4.10</td>
<td>Assessment of Dilution integrity for Guanfacin at DQC Conc (pg/ml)</td>
<td>64</td>
</tr>
<tr>
<td>4.11</td>
<td>Assessment of Whole Batch Re-injection Reproducibility during estimation of Guanfacin in rat plasma</td>
<td>66</td>
</tr>
<tr>
<td>4.12</td>
<td>Ruggedness of the method for estimation of Guanfacin Plasma levels in rat plasma with different Analyst</td>
<td>67</td>
</tr>
<tr>
<td>Table No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>4.13</td>
<td>Ruggedness of the method for estimation of Guanfacin Plasma levels in rat plasma with different Analytical column</td>
<td>69</td>
</tr>
<tr>
<td>4.14</td>
<td>Assessment of stability of Analyte (Guanfacin) in Biological matrix at Room temperature</td>
<td>70</td>
</tr>
<tr>
<td>4.15</td>
<td>Assessment of Freeze-Thaw stability of Analyte (Guanfacin) at -30±5°C</td>
<td>72</td>
</tr>
<tr>
<td>4.16</td>
<td>Assessment of Autosampler stability of Analyte (Guanfacin) at 2-8°C</td>
<td>74</td>
</tr>
<tr>
<td>4.17</td>
<td>Assessment of Long term plasma stability of analyte (Guanfacin) at -30°C</td>
<td>76</td>
</tr>
<tr>
<td>4.18</td>
<td>Assessment of Short term stock solution stability of Analyte (Guanfacin) and Internal standard (Guanfacin 15N$_3$ 13C$_1$) at Room temperature</td>
<td>78</td>
</tr>
<tr>
<td>4.19</td>
<td>Assessment of short term solution stability of internal standard spiking solution (Guanfacin 15N$_3$ 13C$_1$) at refrigerated conditions</td>
<td>79</td>
</tr>
<tr>
<td>4.20</td>
<td>Guanfacin Mean concentration (pg/ml) data for the subject samples obtained from the LC-MS/MS</td>
<td>81</td>
</tr>
<tr>
<td>4.21</td>
<td>Guanfacin Pharmacokinetic data</td>
<td>83</td>
</tr>
<tr>
<td>5</td>
<td>METHOD DEVELOPMENT AND VALIDATION OF METAXALONE IN HUMAN PLASMA</td>
<td>84-134</td>
</tr>
<tr>
<td>5.1</td>
<td>Preparation of reagents and solvents</td>
<td>87</td>
</tr>
<tr>
<td>5.2</td>
<td>Preparation of stock solution</td>
<td>87</td>
</tr>
<tr>
<td>5.3</td>
<td>Screening of Different batches of blank matrix (Human K$_2$EDTA Plasma) for interference free Metaxalone blank plasma</td>
<td>101</td>
</tr>
<tr>
<td>5.4</td>
<td>Limit of Quantification for analyte (Metaxalone)</td>
<td>102</td>
</tr>
<tr>
<td>Table No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>5.5</td>
<td>Intra batch (Within-Batch) Accuracy and Precision for determination Metaxalone levels in human plasma</td>
<td>103</td>
</tr>
<tr>
<td>5.6</td>
<td>Inter batch (Between-Batch) Accuracy and Precision for determination Metaxalone levels in human plasma</td>
<td>105</td>
</tr>
<tr>
<td>5.7</td>
<td>Back-calculated standard concentrations from each calibration curve for Metaxalone in human plasma</td>
<td>107</td>
</tr>
<tr>
<td>5.8</td>
<td>Recovery of Metaxalone and Metaxalone–N-methyl analog from Human plasma</td>
<td>109</td>
</tr>
<tr>
<td>5.9</td>
<td>Assessment of Matrix Effect on determination of Metaxalone at MQC levels in Human plasma</td>
<td>110</td>
</tr>
<tr>
<td>5.10</td>
<td>Assessment of Dilution integrity for Metaxalone at DQC Conc (ng/ml)</td>
<td>111</td>
</tr>
<tr>
<td>5.11</td>
<td>Assessment of whole batch reinjection reproducibility during estimation of Metaxalone in human plasma</td>
<td>113</td>
</tr>
<tr>
<td>5.12</td>
<td>Ruggedness of the method for estimation of Metaxalone Plasma levels in human plasma with different analyst</td>
<td>115</td>
</tr>
<tr>
<td>5.13</td>
<td>Ruggedness of the method for estimation of Metaxalone Plasma levels in human plasma with different Analytical column</td>
<td>117</td>
</tr>
<tr>
<td>5.14</td>
<td>Assessment of stability of Analyte (Metaxalone) in Biological matrix at Room temperature</td>
<td>119</td>
</tr>
<tr>
<td>5.15</td>
<td>Assessment of Freeze-Thaw stability of Analyte (Metaxalone) at -30±5°C</td>
<td>121</td>
</tr>
<tr>
<td>5.16</td>
<td>Assessment of Autosampler stability of Analyte (Metaxalone) at 2-8°C</td>
<td>123</td>
</tr>
<tr>
<td>Table No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>5.17</td>
<td>Assessment of Long term plasma stability of Analyte (Metaxalone) at -30°C</td>
<td>124</td>
</tr>
<tr>
<td>5.18</td>
<td>Assessment of Short term stock solution stability of Analyte (Metaxalone) and Internal standard (Metaxalone N-methyl analog) at Room temperature</td>
<td>126</td>
</tr>
<tr>
<td>5.19</td>
<td>Assessment of Short term solution stability of internal standard spiking solution (Metaxalone- N-methyl analog) at refrigerated conditions</td>
<td>127</td>
</tr>
<tr>
<td>5.20</td>
<td>Metaxalone Mean concentration (ng/ml) data for the subject samples obtained from the LC-MS/MS</td>
<td>130</td>
</tr>
<tr>
<td>5.21</td>
<td>Metaxalone Pharmacokinetic data(Mean Pharmacokinetic Parameters of Metaxalone in 14 Healthy Volunteers after Oral administration of 800 mg (2x400 mg) Test and Reference Products)</td>
<td>133</td>
</tr>
<tr>
<td>6</td>
<td>METHOD DEVELOPMENT AND VALIDATION OF ATOVQUONE IN RAT PLASMA</td>
<td>135-187</td>
</tr>
<tr>
<td>6.1</td>
<td>Preparation of reagents and solvents</td>
<td>140</td>
</tr>
<tr>
<td>6.2</td>
<td>Preparation of stock solutions</td>
<td>140</td>
</tr>
<tr>
<td>6.3</td>
<td>Screening of Different batches of blank matrix (Rat K₂EDTA Plasma) for interference free Atovaquone blank plasma</td>
<td>154</td>
</tr>
<tr>
<td>6.4</td>
<td>Limit of Quantitation for analyte (Atovaquone)</td>
<td>155</td>
</tr>
<tr>
<td>6.5</td>
<td>Intra batch (Within-Batch) Accuracy and Precision for determination Atovaquone levels in rat plasma</td>
<td>156</td>
</tr>
<tr>
<td>6.6</td>
<td>Inter batch (Between-Batch) Accuracy and Precision for determination Atovaquone levels in rat plasma</td>
<td>158</td>
</tr>
<tr>
<td>Table No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>6.7</td>
<td>Back-calculated standard concentrations from each calibration curve for Atovaquone in rat plasma</td>
<td>160</td>
</tr>
<tr>
<td>6.8</td>
<td>Recovery of Atovaquone and Buparvaquone from rat plasma</td>
<td>162</td>
</tr>
<tr>
<td>6.9</td>
<td>Assessment of Matrix Effect on determination of Atovaquone at LQC levels in rat plasma</td>
<td>163</td>
</tr>
<tr>
<td>6.10</td>
<td>Assessment of Matrix Effect on determination of Atovaquone at HQC levels in rat plasma</td>
<td>164</td>
</tr>
<tr>
<td>6.11</td>
<td>Assessment of Dilution integrity for Atovaquone at DQC Conc (ng/mL)</td>
<td>165</td>
</tr>
<tr>
<td>6.12</td>
<td>Assessment of Whole Batch Re-injection Reproducibility during estimation of Atovaquone in rat plasma</td>
<td>167</td>
</tr>
<tr>
<td>6.13</td>
<td>Ruggedness of the method for estimation of Atovaquone Plasma levels in rat plasma with different analyst</td>
<td>169</td>
</tr>
<tr>
<td>6.14</td>
<td>Ruggedness of the method for estimation of Atovaquone Plasma levels in rat plasma with different Analytical column</td>
<td>171</td>
</tr>
<tr>
<td>6.15</td>
<td>Assessment of stability of Analyte (Atovaquone) in Biological matrix at Room temperature</td>
<td>173</td>
</tr>
<tr>
<td>6.16</td>
<td>Assessment of Freeze-Thaw stability of Analyte (Atovaquone) at -30±5°C</td>
<td>175</td>
</tr>
<tr>
<td>6.17</td>
<td>Assessment of Autosampler stability of Analyte (Atovaquone) at 2-8°C</td>
<td>177</td>
</tr>
<tr>
<td>6.18</td>
<td>Assessment of Long term plasma stability of Analyte (Atovaquone) at -30°C</td>
<td>179</td>
</tr>
<tr>
<td>Table No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>6.19</td>
<td>Assessment of Short term stock solution stability of Analyte (Atovaquone) and Internal standard (Buparvaquone) at Room temperature</td>
<td>181</td>
</tr>
<tr>
<td>6.20</td>
<td>Assessment of short term solution stability of internal standard Spiking solution (Buparvaquone) at refrigerated conditions</td>
<td>182</td>
</tr>
<tr>
<td>6.21</td>
<td>Atovaquone Mean concentration (ng/ml) data for the subject samples obtained from the LC-MS/MS</td>
<td>185</td>
</tr>
<tr>
<td>6.22</td>
<td>Atovaquone Pharmacokinetic data</td>
<td>187</td>
</tr>
<tr>
<td>7</td>
<td>METHOD DEVELOPMENT AND VALIDATION OF LEFLUNOMIDE METABOLITE-TERIFLUNOMIDE IN RABBIT PLASMA</td>
<td>188-237</td>
</tr>
<tr>
<td>7.1</td>
<td>Preparation of reagents and solvents</td>
<td>191</td>
</tr>
<tr>
<td>7.2</td>
<td>Preparation of stock solutions</td>
<td>191</td>
</tr>
<tr>
<td>7.3</td>
<td>Screening of Different batches of blank matrix (Rabbit K₂EDTA Plasma) for interference free Leflunomide metabolite blank plasma</td>
<td>202</td>
</tr>
<tr>
<td>7.4</td>
<td>Limit of Quantitation for analyte (Leflunomide metabolite)</td>
<td>203</td>
</tr>
<tr>
<td>7.5</td>
<td>Intra batch (Within-Batch) Accuracy and Precision for determination Leflunomide metabolite levels in rabbit plasma</td>
<td>205</td>
</tr>
<tr>
<td>7.6</td>
<td>Inter batch (Between-Batch) Accuracy and Precision for determination Leflunomide metabolite levels in rabbit plasma</td>
<td>207</td>
</tr>
<tr>
<td>7.7</td>
<td>Back-calculated standard concentrations from each calibration curve for Leflunomide metabolite in rabbit plasma</td>
<td>209</td>
</tr>
<tr>
<td>Table No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>7.8</td>
<td>Recovery of Analyte (Leflunomide metabolite) and Leflunomide metabolite – ethyl analog from rabbit plasma</td>
<td>209</td>
</tr>
<tr>
<td>7.9</td>
<td>Assessment of Matrix Effect on determination of Leflunomide metabolite at LQC levels in rabbit plasma</td>
<td>213</td>
</tr>
<tr>
<td>7.10</td>
<td>Assessment of Matrix Effect on determination of Leflunomide metabolite at HQC levels in rabbit plasma</td>
<td>214</td>
</tr>
<tr>
<td>7.11</td>
<td>Assessment of Dilution integrity for Leflunomide metabolite at DQC Conc (ng/mL)</td>
<td>215</td>
</tr>
<tr>
<td>7.12</td>
<td>Assessment of Whole Batch Re-injection Reproducibility during estimation of Leflunomide metabolite in rabbit plasma</td>
<td>217</td>
</tr>
<tr>
<td>7.13</td>
<td>Ruggedness of the method for estimation of Leflunomide metabolite Plasma levels in rabbit plasma with different analyst</td>
<td>219</td>
</tr>
<tr>
<td>7.14</td>
<td>Ruggedness of the method for estimation of Leflunomide metabolite Plasma levels in rabbit plasma with different Analytical column</td>
<td>221</td>
</tr>
<tr>
<td>7.15</td>
<td>Assessment of stability of Analyte (Leflunomide metabolite) in Biological matrix at Room temperature</td>
<td>223</td>
</tr>
<tr>
<td>7.16</td>
<td>Assessment of Freeze-Thaw stability of Analyte (Leflunomide metabolite) at -30±5°C</td>
<td>225</td>
</tr>
<tr>
<td>7.17</td>
<td>Assessment of Autosampler stability of Analyte (Leflunomide metabolite) at 2-8°C</td>
<td>227</td>
</tr>
<tr>
<td>7.18</td>
<td>Assessment of Long term plasma stability of Analyte (Leflunomide metabolite) at -30°C</td>
<td>229</td>
</tr>
<tr>
<td>Table No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>7.19</td>
<td>Assessment of Short term stock solution stability of Analyte (Leflunomide metabolite) and Internal standard (Leflunomide metabolite - ethyl analog) at Room temperature</td>
<td>232</td>
</tr>
<tr>
<td>7.20</td>
<td>Assessment of short term solution stability of internal standard Spiking solution (Leflunomide metabolite - ethyl analog) at refrigerated conditions</td>
<td>233</td>
</tr>
<tr>
<td>7.21</td>
<td>Leflunomide metabolite Mean concentration (ng/ml) data for the subject samples obtained from the LC-MS/MS</td>
<td>235</td>
</tr>
<tr>
<td>7.22</td>
<td>Leflunomide metabolite Pharmacokinetic data</td>
<td>237</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>METHOD DEVELOPMENT AND VALIDATION OF GUANFACIN IN RAT PLASMA</td>
<td>38-83</td>
</tr>
<tr>
<td>4.1</td>
<td>Chemical structures of Guanfacin, Guanfacin-15N$_3$-13C$_1$ HCl</td>
<td>38</td>
</tr>
<tr>
<td>4.2</td>
<td>Parent ion mass spectra (Q_1) of Guanfacin</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>Product ion mass spectra (Q_3) of Guanfacin</td>
<td>44</td>
</tr>
<tr>
<td>4.4</td>
<td>Parent ion mass spectra (Q_1) of Guanfacin-15N$_3$-13C$_1$</td>
<td>45</td>
</tr>
<tr>
<td>4.5</td>
<td>Product ion mass spectra (Q_3) of Guanfacin-15N$_3$-13C$_1$</td>
<td>45</td>
</tr>
<tr>
<td>4.6</td>
<td>Chromatogram of Blank Rat Plasma Sample of Guanfacin and Guanfacin-15N$_3$-13C$_1$</td>
<td>48</td>
</tr>
<tr>
<td>4.7</td>
<td>Chromatogram of Blank and IS for Guanfacin and Guanfacin-15N$_3$-13C$_1$</td>
<td>49</td>
</tr>
<tr>
<td>4.8</td>
<td>Chromatogram of LOQ sample (Guanfacin and IS)</td>
<td>49</td>
</tr>
<tr>
<td>4.9</td>
<td>Chromatogram of ULOQ Sample (Guanfacin and IS)</td>
<td>50</td>
</tr>
<tr>
<td>4.10</td>
<td>Chromatogram of LLOQ Sample (Guanfacin and IS)</td>
<td>50</td>
</tr>
<tr>
<td>4.11</td>
<td>Chromatogram of LQC Sample (Guanfacin and IS)</td>
<td>51</td>
</tr>
<tr>
<td>4.12</td>
<td>Chromatogram of MQC Sample (Guanfacin and IS)</td>
<td>51</td>
</tr>
<tr>
<td>4.13</td>
<td>Chromatogram of HQC Sample (Guanfacin and IS)</td>
<td>52</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>4.14</td>
<td>Calibration Curve of Guanfacin</td>
<td>52</td>
</tr>
<tr>
<td>4.15</td>
<td>Mean plasma concentration Vs Time curve for Guanfacin</td>
<td>81</td>
</tr>
<tr>
<td>5</td>
<td>METHOD DEVELOPMENT AND VALIDATION OF METAXALONE IN HUMAN PLASMA</td>
<td>84-134</td>
</tr>
<tr>
<td>5.1</td>
<td>Chemical structures of (a) Metaxalone and (b) Metaxalone N-Methylanalog</td>
<td>84</td>
</tr>
<tr>
<td>5.2</td>
<td>Parent ion mass spectra (Q₁) of Metaxalone</td>
<td>90</td>
</tr>
<tr>
<td>5.3</td>
<td>Product ion mass spectra (Q₃) of Metaxalone</td>
<td>90</td>
</tr>
<tr>
<td>5.4</td>
<td>Parent ion mass spectra (Q₁) of Metaxalone-N-methyl analog</td>
<td>90</td>
</tr>
<tr>
<td>5.5</td>
<td>Product ion mass spectra (Q₃) of Metaxalone-N-methyl analog</td>
<td>90</td>
</tr>
<tr>
<td>5.6</td>
<td>Chromatogram of Blank Human Plasma Sample of Metaxalone and Metaxalone-N-methyl analog</td>
<td>96</td>
</tr>
<tr>
<td>5.7</td>
<td>Chromatogram of Blank with IS for Metaxalone and Metaxalone-N-methyl analog in Human plasma</td>
<td>97</td>
</tr>
<tr>
<td>5.8</td>
<td>Chromatogram of LOQ Sample (Metaxalone and IS)</td>
<td>97</td>
</tr>
<tr>
<td>5.9</td>
<td>Chromatogram of ULOQ Sample (Metaxalone and IS)</td>
<td>98</td>
</tr>
<tr>
<td>5.10</td>
<td>Chromatogram of LLOQ Sample (Metaxalone and IS)</td>
<td>98</td>
</tr>
<tr>
<td>5.11</td>
<td>Chromatogram of LQC Sample (Metaxalone and IS)</td>
<td>99</td>
</tr>
<tr>
<td>5.12</td>
<td>Chromatogram of MQC Sample (Metaxalone and IS)</td>
<td>99</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>5.13</td>
<td>Chromatogram of HQC Sample (Metaxalone and IS)</td>
<td>100</td>
</tr>
<tr>
<td>5.14</td>
<td>Calibration Curve of Metaxalone</td>
<td>100</td>
</tr>
<tr>
<td>5.15</td>
<td>Mean plasma concentration Vs Time curve for Metaxalone</td>
<td>131</td>
</tr>
<tr>
<td>6</td>
<td>METHOD DEVELOPMENT AND VALIDATION OF ATOVAQUONE IN RAT PLASMA</td>
<td>135-187</td>
</tr>
<tr>
<td>6.1</td>
<td>Chemical structures of Atovaquone (A), Buparvaquone (B)</td>
<td>135</td>
</tr>
<tr>
<td>6.2</td>
<td>Parent ion mass spectra (Q₁) of Atovaquone</td>
<td>144</td>
</tr>
<tr>
<td>6.3</td>
<td>Product ion mass spectra (Q₃) of Atovaquone</td>
<td>144</td>
</tr>
<tr>
<td>6.4</td>
<td>Parent ion mass spectra (Q₁) Buparvaquone</td>
<td>144</td>
</tr>
<tr>
<td>6.5</td>
<td>Product ion mass spectra (Q₃) of Buparvaquone</td>
<td>144</td>
</tr>
<tr>
<td>6.6</td>
<td>Chromatogram of Blank Rat Plasma Sample of Atovaquone and Buparvaquone</td>
<td>149</td>
</tr>
<tr>
<td>6.7</td>
<td>Chromatogram of Blank and IS for Atovaquone and Buparvaquone</td>
<td>150</td>
</tr>
<tr>
<td>6.8</td>
<td>Chromatogram of LOQ sample (Atovaquone and IS)</td>
<td>150</td>
</tr>
<tr>
<td>6.9</td>
<td>Chromatogram of ULOQ Sample (Atovaquone and IS)</td>
<td>151</td>
</tr>
<tr>
<td>6.10</td>
<td>Chromatogram of LLOQ Sample (Atovaquone and IS)</td>
<td>151</td>
</tr>
<tr>
<td>6.11</td>
<td>Chromatogram of LQC Sample (Atovaquone and IS)</td>
<td>152</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>6.12</td>
<td>Chromatogram of MQC Sample (Atovaquone and IS)</td>
<td>152</td>
</tr>
<tr>
<td>6.13</td>
<td>Chromatogram of HQC Sample (Atovaquone and IS)</td>
<td>153</td>
</tr>
<tr>
<td>6.14</td>
<td>Calibration Curve of Atovaquone</td>
<td>153</td>
</tr>
<tr>
<td>6.15</td>
<td>Mean plasma concentration Vs Time curve for Atovaquone</td>
<td>185</td>
</tr>
<tr>
<td>7</td>
<td>METHOD DEVELOPMENT AND VALIDATION OF LEFLUNOMIDE METABOLITE-TERIFLUNOMIDE IN RABBIT PLASMA</td>
<td>188-237</td>
</tr>
<tr>
<td>7.1</td>
<td>Chemical structures of Leflunomide metabolite and Leflunomide metabolite ethyl analog</td>
<td>188</td>
</tr>
<tr>
<td>7.2</td>
<td>Parent ion mass spectra (Q₁) of Leflunomide metabolite</td>
<td>194</td>
</tr>
<tr>
<td>7.3</td>
<td>Product ion mass spectra (Q₃) of Leflunomide metabolite</td>
<td>194</td>
</tr>
<tr>
<td>7.4</td>
<td>Parent ion mass spectra (Q₁) Leflunomide metabolite ethyl analog</td>
<td>194</td>
</tr>
<tr>
<td>7.5</td>
<td>Product ion mass spectra (Q₃) of Leflunomide metabolite ethyl analog</td>
<td>194</td>
</tr>
<tr>
<td>7.6</td>
<td>Chromatogram of Blank Rabbit Plasma Sample of Leflunomide metabolite and Leflunomide metabolite ethyl analog</td>
<td>197</td>
</tr>
<tr>
<td>7.7</td>
<td>Chromatogram of Blank and IS for Leflunomide metabolite and Leflunomide metabolite ethyl analog</td>
<td>198</td>
</tr>
<tr>
<td>7.8</td>
<td>Chromatogram of LOQ sample (Leflunomide metabolite and Leflunomide metabolite ethyl analog)</td>
<td>198</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>7.9</td>
<td>Chromatogram of ULOQ Sample (Leflunomide metabolite and Leflunomide metabolite ethyl analog)</td>
<td>199</td>
</tr>
<tr>
<td>7.10</td>
<td>Chromatogram of LLOQ Sample (Leflunomide metabolite and Leflunomide metabolite ethyl analog)</td>
<td>199</td>
</tr>
<tr>
<td>7.11</td>
<td>Chromatogram of LQC Sample (Leflunomide metabolite and Leflunomide metabolite ethyl analog)</td>
<td>200</td>
</tr>
<tr>
<td>7.12</td>
<td>Chromatogram of MQC Sample (Leflunomide metabolite and Leflunomide metabolite ethyl analog)</td>
<td>200</td>
</tr>
<tr>
<td>7.13</td>
<td>Chromatogram of HQC Sample (Leflunomide metabolite and Leflunomide metabolite ethyl analog)</td>
<td>201</td>
</tr>
<tr>
<td>7.14</td>
<td>Calibration Curve of Leflunomide metabolite</td>
<td>201</td>
</tr>
<tr>
<td>7.15</td>
<td>Mean plasma concentration Vs Time curve for Leflunomide metabolite</td>
<td>235</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>µg</td>
<td>Micro Grams</td>
</tr>
<tr>
<td>µg</td>
<td>Microlitre</td>
</tr>
<tr>
<td>ACN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>ANDA</td>
<td>Abrivated New Drug Application</td>
</tr>
<tr>
<td>API</td>
<td>Active Pharmaceutical Ingredient</td>
</tr>
<tr>
<td>AQ</td>
<td>Atovaquone</td>
</tr>
<tr>
<td>Conc</td>
<td>Concentration</td>
</tr>
<tr>
<td>CS</td>
<td>Calibration Standards</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of Variation</td>
</tr>
<tr>
<td>GF</td>
<td>Guanfacin</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>HQC</td>
<td>High Quality Control.</td>
</tr>
<tr>
<td>Hrs</td>
<td>Hours</td>
</tr>
<tr>
<td>ICH</td>
<td>International Conference on Harmonisation</td>
</tr>
<tr>
<td>IS</td>
<td>Internal Standard</td>
</tr>
<tr>
<td>LC-MS/MS</td>
<td>Liquid Chromatography-Tandem Mass Spectrometry</td>
</tr>
<tr>
<td>LLE</td>
<td>Liquid-liquid extraction</td>
</tr>
<tr>
<td>LLOQ</td>
<td>Lower Limit of Quantification</td>
</tr>
<tr>
<td>LLOQC</td>
<td>Lower Limit of Quality Control</td>
</tr>
<tr>
<td>LM</td>
<td>Leflunomide metabolite</td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of Detection</td>
</tr>
<tr>
<td>LQC</td>
<td>Low Quality Control</td>
</tr>
<tr>
<td>Max.</td>
<td>Maximum</td>
</tr>
<tr>
<td>ME</td>
<td>Metaxalone</td>
</tr>
<tr>
<td>MEOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>mg</td>
<td>Milli Grams</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Min</td>
<td>Minutes</td>
</tr>
<tr>
<td>Min.</td>
<td>Minimum</td>
</tr>
<tr>
<td>ml</td>
<td>Milli Liter</td>
</tr>
<tr>
<td>MQC</td>
<td>Medium Quality Control.</td>
</tr>
<tr>
<td>NDA</td>
<td>New Drug Application</td>
</tr>
<tr>
<td>ng</td>
<td>Nano Grams</td>
</tr>
<tr>
<td>pg</td>
<td>Pico Grams</td>
</tr>
<tr>
<td>PPT</td>
<td>Precipitation</td>
</tr>
<tr>
<td>GC</td>
<td>Quality Control.</td>
</tr>
<tr>
<td>r</td>
<td>Correlation Coefficient</td>
</tr>
<tr>
<td>rpm</td>
<td>Rotations per Minute</td>
</tr>
<tr>
<td>RT</td>
<td>Retention Time</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>Sec</td>
<td>Seconds</td>
</tr>
<tr>
<td>SPE</td>
<td>Solid phase extraction</td>
</tr>
<tr>
<td>Temp</td>
<td>Temperature</td>
</tr>
<tr>
<td>TF</td>
<td>Teriflunomide</td>
</tr>
<tr>
<td>ULOG</td>
<td>Upper Limit of Quantification</td>
</tr>
<tr>
<td>USFDA</td>
<td>United States Food and Drug Administration.</td>
</tr>
</tbody>
</table>