CONTENTS

1. INTRODUCTION

2. REVIEW OF LITERATURE
 2.1. Ecology and distribution of Vibrio species in marine environments
 2.1.1. Distribution of vibrios in sea water
 2.1.1.1. Influence of temperature on vibrios in water
 2.1.1.2. Influence of pH on vibrios in water
 2.1.1.3. Influence of salinity on vibrios in water
 2.1.1.4. Influence of other factors on vibrios in water
 2.1.2. Distribution of vibrios in sediment
 2.1.3. Distribution of vibrios in plankton
 2.1.4. Distribution of vibrios in finfishes
 2.1.4.1. Distribution of vibrios in skin of fin fishes
 2.1.4.2. Distribution of vibrios in gill of fin fishes
 2.1.4.3. Distribution of vibrios in intestine of fin fishes
 2.1.5. Distribution of vibrios in shellfishes
 2.1.6. Distribution of vibrios as effected by season
 2.1.7. Distribution of vibrios in relation to indicator bacteria
 2.2. Characterisation of vibrios
 2.2.1. Taxonomic status of the genus Vibrio
 2.2.2. Biochemical characteristics of the Vibrio
 2.2.3. Physico-chemical parameters influencing growth of Vibrio
 2.2.3.1. Temperature
 2.2.3.2. pH
 2.2.3.3. Salinity
 2.2.3.4. Low oxygen level
 2.2.3.5. Other parameters
 2.2.4. Factors influencing the prevalence of Vibrio in the Intestine
 2.3. Pathogenicity of Vibrio isolates
 2.3.1. Production of extra-cellular cytolysins - cytotoxins.
 2.3.2. Production of hydrolytic enzymes.
 2.3.3. Virulence determination in animal models.
 2.3.4. Other virulence factors
 2.4. Spoilage potential of Vibrio isolates
 2.4.1. Role of bacteria in spoilage
 2.4.2. Role of Vibrio in spoilage
 2.4.2.1. Survival of Vibrio species in low storage temperatures
2.4.2.2. Elimination of *Vibrio* by elevated temperature
2.4.2.3. Production of hydrolytic enzyme by *Vibrio* and their role in spoilage.

3. MATERIALS AND METHODS

3.1. Materials

3.1.1. Media

3.1.1.1. Dehydrated media
3.1.1.2. Compounded media and its composition

3.1.2. Samples for analysis

3.1.2.1. Water
3.1.2.2. Sediment
3.1.2.3. Plankton
3.1.2.4. Fin fishes
3.1.2.5. Shell fishes

3.1.3. Bacterial strains

3.1.4. Experimental animals

3.2. Methods

3.2.1. Methods for ecological study of *Vibrio*

3.2.1.1. Analysis of samples

3.2.1.2. Sediment
3.2.1.3. Plankton
3.2.1.4. Fin fishes.
3.2.1.5. Shell fishes.

3.2.1.2. Isolation of cultures

3.2.1.3. Identification of cultures

3.2.1.4. Maintenance of cultures

3.2.2. Methods for detecting biochemical traits and growth.

3.2.2.1. Biochemical studies

3.2.2.1.1. Inoculum preparation
3.2.2.1.2. Gram staining
3.2.2.1.3. Oxidase test
3.2.2.1.4. Hugh-Leifson test
3.2.2.1.5. Decarboxylation of amino acids
3.2.2.1.6. Salt tolerance studies
3.2.2.1.7. Temperature tolerance studies
3.2.2.1.8. Esculin hydrolysis
3.2.2.1.9. Citrate utilisation
3.2.2.1.10 Gelatinase production
3.2.2.1.11 Gas from glucose
3.2.2.1.12 Indole production
3.2.2.1.13 Luminescence
3.2.2.1.14 Nitrate reduction
3.2.2.1.15 ONPG reaction
3.2.2.1.16 Swarming
3.2.2.1.17 Urease production
3.2.2.1.18. Voges proskauer test
3.2.2.1.19. Carbon utilisation study
3.2.2.1.20. Fermentation study of sugars
3.2.2.1.21. Disc diffusion test
3.2.2.1.22. Hydrolytic enzyme production
\hspace{1em} 3.2.2.1.22.1. Casienase
\hspace{1em} 3.2.2.1.22.2. Lipase
\hspace{1em} 3.2.2.1.22.3. Leciethinase
\hspace{1em} 3.2.2.1.22.4. Amylase
\hspace{1em} 3.2.2.1.22.5. DNasse
\hspace{1em} 3.2.2.1.22.6. Phosphatase
3.2.2.1.23. Production of haemolysin
3.2.2.1.24. \(\text{H}_2\text{S} \) production
3.2.2.2. Determination of the variability of sucrose fermentation
3.2.2.3. Evaluation of the proposed key for the identification of \textit{V. vulnificus}
3.2.2.4. \textit{In vitro} Growth studies
\hspace{1em} 3.2.2.4.1. Temperature tolerance
\hspace{1em} 3.2.2.4.2. Salinity tolerance
\hspace{1em} 3.2.2.4.3. pH tolerance
\hspace{1em} 3.2.2.4.4. Low oxygen level (reduced redox levels)
3.2.2.5. Bile tolerance
3.2.2.6. Studies to determine competitive growth of \textit{Vibrio} isolates in mixed population.
\hspace{1em} 3.2.2.6.1. \textit{V. vulnificus} Vs \textit{V. alginolyticus}
\hspace{1em} 3.2.2.6.2. \textit{V. vulnificus} Vs \textit{V. parahaemolyticus}
\hspace{1em} 3.2.2.6.3. \textit{V. vulnificus} Vs \textit{V. harveyi}
\hspace{1em} 3.2.2.6.4. \textit{V. vulnificus} Vs \textit{Aeromonas hydrophila}
\hspace{1em} 3.2.2.6.5. \textit{V. vulnificus} Vs \textit{Escherichia coli}
3.2.3. Methods to test pathogenic potential of \textit{Vibrio}.
\hspace{1em} 3.2.3.1. Hydrolytic enzymes involved in virulence
\hspace{1em} 3.2.3.2. Animal inoculation studies
3.2.4. Methods to determine spoilage potential of \textit{Vibrio}
\hspace{1em} 3.2.4.1. Hydrolytic enzyme studies
\hspace{1em} 3.2.4.2. Low temperature storage study
3.2.4.3. Determination of bacterial destruction at elevated temperatures

3.2.5. Statistical analysis

4. RESULTS AND DISCUSSION

4.1. Ecology and distribution of Vibrio species in marine environment

4.1.1. Distribution of Vibrio species in sea water

4.1.1.1. Quantitative distribution of Vibrio in sea water

4.1.1.2. Qualitative distribution of Vibrio in sea water

4.1.2. Distribution of Vibrio in sediment

4.1.2.1. Quantitative distribution of Vibrio in sediment

4.1.2.2. Qualitative distribution of Vibrio in sediment

4.1.3. Distribution of Vibrio species in plankton

4.1.3.1. Quantitative distribution of Vibrio in plankton

4.1.3.2. Qualitative distribution of Vibrio in plankton

4.1.4. Distribution of Vibrio in fin fishes

4.1.4.1. Distribution of Vibrio in skin and muscle of finfishes

4.1.4.2. Distribution of Vibrio in gill of finfishes

4.1.4.3. Distribution of Vibrio in intestine of finfishes

4.1.5. Distribution of Vibrio in shellfishes

4.1.6. Distribution of Vibrio in prey fishes.

4.1.7. Distribution of Vibrio as affected by season.

4.1.8. Distribution of Vibrio as affected by habitat.

4.1.9. Vibrio in relation to indicator bacteria

4.2. Characterisation of Vibrio isolates

4.2.1. Biochemical characterisation of Vibrio species

4.2.1.1. Evaluation of the colour masking behaviour of Vibrio isolates in TCBS medium

4.2.1.2. Selection of identification keys and proposal of an identification scheme for Vibrio vulnificus

4.2.2. In vitro growth studies of selected Vibrio species

4.2.2.1. Tolerance to temperature by selected Vibrio species.

4.2.2.2. Tolerance to salinity by selected Vibrio species

4.2.2.3. Tolerance to pH by selected Vibrio species

4.2.2.4. Growth of selected Vibrio species as affected by low oxygen levels

4.2.2.5. Tolerance to bile by selected Vibrio species

4.2.2.6. Competitive growth of selected Vibrio species in mixed cultures

4.3. Pathogenic potential of Vibrio species

4.3.1. Production of hydrolytic enzyme by selected Vibrio species.

4.3.1.1. Production of protease by Vibrio species
4.3.1.2. Production of lipase by *Vibrio* species. 124
4.3.1.3. Production of amylase by *Vibrio* species 125
4.3.1.4. Production of lecithinase by *Vibrio* species 126
4.3.1.5. Production of deoxyribonuclease by *Vibrio* species 127
4.3.1.6. Production of hemolysin by *Vibrio* species 127

4.3.2. Animal inoculation studies 129

4.4. Spoilage potential of *Vibrio* species 132
4.4.1. Effect of low temperature on the survival selected *Vibrio* species 132
4.4.2. Sensitivity of *Vibrio* species to elevated temperatures. 136
4.4.3. Production of hydrolytic enzyme by *Vibrio* species. 136

5. SUMMARY 142

6. REFERENCES 154