LIST OF FIGURES

Figure 1.1. Xoo-rice pathosystem 7
Figure 1.2. Symptoms of the diseases caused by Xanthomonas pathogens on rice 8
Figure 1.3. Symptoms of various plant diseases caused by genus Xanthomonas 9

Figure 2.1. Schematic of a hanging drop vapour diffusion setup 24
Figure 2.2. A simplified schematic of the process of in-house X-ray diffraction and data collection 25
Figure 2.3. Argand diagram of the vectors representing the structure factors of native and heavy atom derivative data 29
Figure 2.4. Harker construction to show the two possible phases 29
Figure 2.5. Structure factors in an isomorphous replacement method for centric reflections 31
Figure 2.6. LipA purification and crystallization 36
Figure 2.7. Patterson map of the platinum dataset 40
Figure 2.8. Comparison of fourier maps calculated after Solve and Resolve runs 41
Figure 2.9. Comparison of Electron density maps calculated after Solve and Resolve runs 42
Figure 2.10. Three-Dimensional Structure of LipA 45
Figure 2.11. Structural superimposition of LipA with CalA 47

Figure 3.1. Three-Dimensional Structure of LipA 60
Figure 3.2. The LipA ligand-binding tunnel has a carbohydrate-anchoring pocket 62
Figure 3.3. Sequence features of LipA 64
Figure 3.4. ITC analysis of LipA with acyl glucosides 65
Figure 3.5. Surface view of LipA 66
Figure 3.6. Phylogenetic analysis of LipA sequence homologs 68
Figure 3.7. Homology model of Ideonella LipA-like protein 69
Figure 3.8. Superposition of the lid domains of LipA and CalA 70
Figure 3.9. LipA exhibits esterase activity 71
Figure 3.10. LipA substrate specificity and activity curve 72
Figure 3.11. LipA enzyme kinetics 73
Figure 3.12. Western blot analysis of wild-type and mutant LipA proteins 75
Figure 3.13. Virulence phenotypes of LipA mutants

Figure 3.14. LipA mutant proteins are deficient at induction of defense response associated callose deposition in rice leaves

Figure 3.15. LipA mutant proteins are deficient at induction of defense response associated programmed cell death in rice roots

Figure 3.16. The LipA ligand-binding tunnel is blocked in the G231F and N228W mutant proteins of LipA

Figure 4.1. *Yersinia* YadA crystal structure

Figure 4.2. *Haemophilus influenza* Hia crystal structure

Figure 4.3. Structures of β-domains of autotransporter adhesins

Figure 4.4. Preliminary sequence analysis of XadA

Figure 4.5. Manual YadA-structure-based-alignment of XadA

Figure 4.6. The homology models of the four head-neck domains of XadA

Figure 4.7. A homology model of the XadA passenger domain

Figure 4.8. Electrostatic surface potential of the four trimeric domains of XadA

Figure 4.9. Comparison of XadA across Xanthomonad species

Figure 5.1. Schematic representation of the various constructs of XadA

Figure 5.2. Schematic representation of the strategy used for generation of mutation in *hrpG, hrpX* and *hfq* genes of Xoo using pK18Mob vector

Figure 5.3. Xoo XadA protein shows intrinsic instability when expressed in *E. coli*

Figure 5.4. Western blot analysis of XadA expression from outer-membrane protein pool of Xoo

Figure 5.5. XadA expression is glutamate dependent

Figure 5.6. Characteristics of Glutamate-dependent XadA expression

Figure 5.7. Relative enrichment of XadA obtained by the partial purification protocol

Figure 5.8. Western blot analysis of XadA expression in transcriptional regulator mutants of Xoo

Figure 5.9. *xadA* transcripts are present in all media conditions

Figure 5.10. *xadA* transcript has a long 5'UTR