TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synopsis</td>
<td>iv-v</td>
</tr>
<tr>
<td>List of figures</td>
<td>vi-vii</td>
</tr>
<tr>
<td>List of tables</td>
<td>viii</td>
</tr>
<tr>
<td>List of abbreviations</td>
<td>ix</td>
</tr>
<tr>
<td>List of publications</td>
<td>x</td>
</tr>
</tbody>
</table>

1. Chapter One: Introduction

1.1 Pathosystems and host-pathogen coevolution 2
1.2 Understanding pathosystems through protein evolution 3
1.3 Bacterial-plant pathosystems 4
1.4 Bacterial blight of rice 5
1.5 The BB pathogen *Xanthomonas oryzae* pv. oryzae and its relatives 6
1.6 Comparison of *Xanthomonas* genomes 10
1.7 Dissecting Xoo-rice interactions: attack-counterattack strategies 11
 1.7.1 Xoo entry into rice 12
 1.7.2 Detection of breach and rice pre-alert 13
 1.7.3 Suppression of rice innate immune responses by Xoo 14
 1.7.4 Active invasion of rice tissues by Xoo 15
 1.7.5 Specific defense responses of rice against Xoo 16
 1.7.6 Disease 16
1.8 Unresolved questions and prospects: utilizing protein structures 17
1.9 Scope of the current study 18

2. Chapter Two: Crystal structure determination of a rice cell wall degrading esterase from *Xanthomonas oryzae* pv. oryzae

2.1 Abstract 21
2.2 Introduction 22
2.3 Materials and methods 27
 2.3.1 Over-expression of LipA 27
 2.3.2 Purification of LipA from Xoo culture supernatants 28
 2.3.3 Crystallization 28
 2.3.4 Preparation of heavy atom derivatives 29
 2.3.5 Data collection and processing 30
 2.3.6 Calculating heavy atom positions 31
 2.3.7 Improving phases 33
 2.3.8 Model building 33
 2.3.9 Structure refinement and assessment 33
 2.3.10. Structure & sequence analysis 34
2.4 Results and Discussion

2.4.1. LipA crystals & X-ray diffraction data collection statistics
2.4.2. Heavy atom derivatives of LipA crystals
2.4.3. LipA structure phasing and refinement
2.4.4. General features of LipA structure

3. Chapter Three: Insights into structure and function of the rice cell wall degrading esterase from Xanthomonas oryzae pv. oryzae

3.1 Abstract
3.2 Introduction
3.3 Materials and methods
3.3.1. Cocrystallization of LipA with BOG
3.3.2. Structure solution of LipA-BOG cocrystals
3.3.3. Structure & sequence analysis
3.3.4. Isothermal Titration Calorimetry
3.3.5. Site-directed mutagenesis and purification of mutant proteins
3.3.6. Western analysis of LipA using anti-LipA antibodies
3.3.7. Substrate clearance assay
3.3.8. Virulence assay
3.3.9. Callose deposition assay
3.3.10. Programmed cell death assay

3.4 Results
3.4.1. Identification of a distinct ligand-binding domain in LipA structure
3.4.2. LipA-like substrate recognition evolved in genus Xanthomonas
3.4.3. LipA exhibits esterase and not lipase activity
3.4.4. Point mutations in LipA and assessment of in vitro activity
3.4.5. Verification of BOG binding to LipA and its mutants
3.4.6. LipA ligand-binding domain is essential for virulence on rice
3.4.7. Loss of induction of rice innate immunity
3.4.8. LipA point-mutant structures confirm the structural basis of ligand binding

3.5 Discussion and implications of the study

4. Chapter Four: In silico sequence analysis and homology modelling of Xanthomonas adhesin-like protein A (XadA) from Xanthomonas oryzae pv. oryzae

4.1 Abstract
4.2 Introduction
4.2.1 Adhesin-like functions of Xoo
4.2.2 Preliminary characterization of XadA
4.2.3 Afimbrial autotransporter adhesins
4.2.4 Structural organization of trimeric autotransporter adhesins

4.3 Methods
4.3.1 XadA protein sequence analysis
4.3.2 Manual alignments
5. Chapter Five: Expression studies on Xanthomonas adhesin-like protein (XadA) from Xanthomonas oryzae pv. oryzae

5.1 Abstract
5.2 Introduction
5.3 Materials and methods
5.3.1 Growth media used in the study
5.3.2 Cloning of XadA in various domain combinations into E. coli
5.3.3 Expression and purification of the XadA constructs in E. coli
5.3.4 Assessing protease contamination in purified XadA proteins
5.3.5 Protocol used for attempting crystallization of XadA
5.3.6 Assessment of polydispersity in purified XadA proteins
5.3.7 In silico analysis of disorder in XadA sequence
5.3.8 Secondary structure analysis of purified globular regions of XadA
5.3.9 Polyclonal anti-XadA antibody generation
5.3.10 Xoo outer membrane protein preparations and Western blotting
5.3.11 Enrichment and partial purification of XadA from Xoo cells
5.3.12 RNA isolation and Real time PCR analysis of xadA transcripts
5.3.13 XadA primer extension and transcriptional start site mapping
5.3.14 Generation of mutations in hrpG, hrpX, and hfq genes of Xoo
5.4 Results and discussion
5.4.1 XadA protein overexpressed in E. coli is intrinsically unstable
5.4.2 XadA expression in Xoo is nutrient condition-dependent
5.4.3 Glutamate regulates XadA expression
5.4.4 Glutamate induces a rapid and stable XadA expression
5.4.5 XadA expression is independent of the characterized response regulators of Xoo
5.4.6 Glutamate-dependent XadA expression is post-transcriptionally regulated
5.4.7 xadA 5'UTR is involved in regulation of XadA expression
5.5 Inferences from the study

Future Plans
Bibliography