Table of Contents

Topic                                                                 Page No.

Synopsis                                                              iv-vii
List of abbreviations                                               viii-ix
List of publications                                                x

Chapter 1: Introduction

1.1 Mycobacterium tuberculosis                                       2
   1.1.1 Pathogenesis                                                2
   1.1.2 Host defence mechanisms                                    5
   1.1.3 Anti-Tuberculosis Drugs and Agents                         7
   1.1.4 Cell Wall of Mycobacterium tuberculosis                   10
   1.1.5 Biosynthesis of Cell Wall Lipids                           13
   1.1.6 Mycobacterial Polyketide Synthases (PKSs)                  17

1.2 Acyl-Activating Enzymes (AAEs)                                   19
   1.2.1 Reaction Mechanism and Conserved Sequence Motifs of AAEs   21
   1.2.2 Structural studies of AAEs                                 24
   1.2.3 Mutational and Functional studies of AAEs                  34
   1.2.4 AAEs of Mycobacterium tuberculosis                        36

Chapter 2: Experimental procedures                                   40

2.1 Introduction                                                     43
2.2 Materials and Methods                                           43
   2.2.1 Materials                                                 43
   2.2.2 Methods                                                  43
      2.2.2.1 Preparation of ultra competent cells                   43
      2.2.2.2 Transformation of clones                              44
      2.2.2.3 Overexpression of recombinant proteins                44
      2.2.2.4 Preparation of L-Selenomethionine derivative protein  45
         2.2.2.4.1 Feedback Inhibition method                         45
         2.2.2.4.2 Using Methionine auxotroph strain of E.coli       46
      2.2.2.5 Protein Purification                                  46
      2.2.2.6 Sample Concentration                                  46
      2.2.2.7 Estimation of Protein Concentration                   47
      2.2.2.8 Siliconization of coverslips                          47
      2.2.2.9 Protein Crystallization                               47
         2.2.2.9.1 Crystal Seeding                                    48
      2.2.2.10 Cryo-protection                                      49
      2.2.2.11 Post-crystallization treatments                      49
         2.2.2.11.1 Annealing                                         49
         2.2.2.11.2 Dehydration                                       50
      2.2.2.12 Data Collection and Processing                       51
         2.2.2.12.1 In-house X-ray source                             51
Chapter 3: Crystallization, structure determination and analysis of Mycobacterial FAAL28 protein

3.1 Introduction

3.2 Materials and Methods
   3.2.1 Materials
   3.2.2 Methods
      3.2.2.1 Expression of recombinant FAAL28 proteins
      3.2.2.2 Purification of recombinant proteins
      3.2.2.3 Crystallization
      3.2.2.4 Data collection and processing
      3.2.2.5 Structure solution and refinement
      3.2.2.6 Modelling studies

3.3 Results
   3.3.1 Expression and purification of FAAL28 proteins
   3.3.2 Crystallization of FAAL28 proteins
   3.3.3 Data collection, processing and structure solution
   3.3.4 Overall Structure
   3.3.5 Proposed role of FAAL specific insertion
   3.3.6 Insertion sequence converts FACL into an FAAL
   3.3.7 Gain of function in FAAL28 to synthesize acyl-CoA

3.4 Discussion

Chapter 4: Deciphering the substrate specificity code of FAAL enzymes

4.1 Introduction

4.2 Methods
   4.2.1 Expression of recombinant FAAL28 mutant protein (G330W)
   4.2.2 Purification and crystallization of FAAL28 (G330W)
   4.2.3 Data Collection and processing
   4.2.4 Structure determination and refinement
   4.2.5 Modelling studies

4.3 Results
   4.3.1 Comparative structural analysis of substrate-binding regions of mycobacterial FAAL proteins
   4.3.2 Re-engineering FAAL28 and FAAL32 substrate specificities
   4.3.3 Expression and purification of FAAL28 (G330W)
   4.3.4 Crystallization of FAAL28 (G330W)
4.3.5 Structure solution
4.3.6 Structural basis of switching of substrate specificity

4.4 Discussion

Chapter 5: Crystallization and Structural studies of Mycobacterial FACIL enzymes

5.1 Introduction
5.2 Methods
5.2.1 Expression of recombinant FACIL proteins
5.2.2 Purification
5.2.3 Crystallization
5.2.4 Data collection and processing
5.2.5 Structure solution and refinement

5.3 Results
5.3.1 Expression and purification of FACIL proteins
5.3.2 Crystallization of FACIL proteins
5.3.2.1 Crystallization of FACIL6 protein
5.3.2.2 Crystallization of FACIL13 protein
5.3.3 Dehydration and Annealing of FACIL13 protein crystals
5.3.4 Data collection, processing and structure solution
5.3.5 Structure analysis
5.3.5.1 Description of the overall structure
5.3.5.2 Binding of nonhydrolyzable analogue (LAMS)
5.3.5.3 Structural basis of opening of fatty acid binding tunnel
5.3.5.4 Comparison with FAAL28 structure

5.4 Discussion

Conclusions and Future Plans

Appendix
Bibliography