Chapter - 5

On Fuzzy Pairwise Semi Pre-irresolute Functions

In this chapter we introduce a new class of functions called fuzzy pairwise semi pre- irreseolute functions which is the generalization of fuzzy semi pre-irreseolute functions [5] in fuzzy topological spaces to fuzzy bitopological spaces.

In 1994, J. H. Park and B.H. Park introduced the concept of fuzzy pre-irreseolute functions in [52] and that of fuzzy pre-open sets and fuzzy pre-continuous functions in [67] and then it extended to fuzzy semi-pre-irreseolute function in [5]. The idea of fuzzy semi pre open sets and fuzzy semi pre-continuous function was introduced in 1994 by J. H. Park and et al. In 2004, Y. B. Im [27] introduced fuzzy pairwise pre-irreseolute functions and study their properties. Weaker forms of fuzzy pairwise continuity on fuzzy bitopological spaces as natural generalization of a fuzzy topological spaces have been considered by many workers using the concepts of \((\tau_i, \tau_j)\)-fuzzy semi-open sets and \((\tau_i, \tau_j)\)-fuzzy strongly semi open sets. Sampat Kumar [59] introduced a \((\tau_i, \tau_j)\)-fuzzy pre open set and fuzzy pairwise pre continuous function on fuzzy bitopological spaces.

In this chapter, using the concept of \((\tau_i, \tau_j)\)-fuzzy semi pre-closed set, \((\tau_i, \tau_j)\)-fuzzy semi pre-interior and \((\tau_i, \tau_j)\)-fuzzy semi pre- closure of \(X\) we investigate the properties of a fuzzy pairwise semi pre-irreseolute function on fuzzy bitopological spaces.

Definition 5.1. Let \((X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)\) be a function. Then \(f\) is called a fuzzy pairwise semi pre-irreseolute function if \(f^{-1}(\nu)\) is \((\tau_i, \tau_j)\)-fuzzy semi pre open set of \(X\) for each \((\sigma_i)\)-fuzzy semi pre open set \(\nu\) of \(Y\), or equivalently, if \(f^{-1}(\nu)\) is \((\tau_i, \tau_j)\)-fuzzy semi pre closed set of \(X\) for each \(\sigma_i\)-fuzzy semi pre closed set \(\nu\) of \(Y\).

A function \(f : X \rightarrow Y\) is fuzzy pre- irreseolute if \(f^{-1}(\alpha)\) is a fuzzy pre open subset of \(X\) for each fuzzy pre open subset \(\alpha\) of \(Y\).
Some fuzzy functions in fuzzy bitopological spaces and separation axioms in completely induced fuzzy bitopological spaces

Since every fuzzy pre-open subset is fuzzy semi pre-open which can be extended to fuzzy pairwise semi pre-open. It can be seen that every fuzzy pairwise pre-irresolute function is fuzzy pairwise semi pre irresolute. But the converse is not true in general.

Example 5.2: Let \(\alpha_1, \alpha_2, \alpha_3 \) be fuzzy sets on \(I \) defined as follows:

\[
\alpha_1 = \begin{cases}
0 & 0 \leq x \leq \frac{1}{2} \\
2x-1 & \frac{1}{2} \leq x \leq 1
\end{cases}
\]

\[
\alpha_2 = \begin{cases}
1 & 0 \leq x \leq \frac{1}{4} \\
4x-1 & \frac{1}{4} \leq x \leq \frac{1}{2} \\
0 & \frac{1}{2} \leq x \leq 1
\end{cases}
\]

\[
\alpha_3 = \begin{cases}
0 & 0 \leq x \leq \frac{1}{4} \\
-2x+2 & \frac{1}{4} \leq x \leq \frac{1}{2}
\end{cases}
\]

Consider fuzzy topologies

\(\tau_1 = \{0, \alpha_2, 1\} \), \(\tau_2 = \{0, \alpha_3, 1\} \)

Let \(f: (X, \tau_1, \tau_2) \to (X, \tau_1, \tau_2) \) and defined by \(f(x) = x \) for each \(x \in [0, 1] \).

Then it can be easily shown that \(\alpha_3, \alpha_2, \alpha_1\) are \((\tau_i, \tau_j)\)-fspo set.

For \(\alpha_3 \):

\(\tau_2-\text{cl}\tau_2-\text{int}\alpha_3 = \tau_2-\text{cl}\tau_1-\text{int}(\alpha_3) = \tau_2-\text{cl}(\alpha_2) = \alpha_3 \geq \alpha_3 \)

\(\tau_1-\text{cl}\tau_2-\text{int}\alpha_3 = \tau_1-\text{cl}\tau_2-\text{int}(1) = \tau_1-\text{cl}(1) = 1 \geq \alpha_3 \quad \therefore \alpha_3 \) is \((\tau_i, \tau_j)\)-fspo set.

For \(\alpha_1 \):

\(\tau_2-\text{cl}\tau_1-\text{int}\alpha_1 = \tau_2-\text{cl}\tau_1-\text{int}(1) = \tau_2-\text{cl}(1) = 1 \geq \alpha_1 \)

\(\tau_1-\text{cl}\tau_2-\text{int}\alpha_1 = \tau_1-\text{cl}\tau_2-\text{int}(1) = \tau_1-\text{cl}(1) = 1 \geq \alpha_1 \quad \therefore \alpha_1 \) is \((\tau_i, \tau_j)\)-fspo set.

For \(\alpha_2 \):

\(\tau_2-\text{cl}\tau_1-\text{int}\alpha_2 = \tau_2-\text{cl}\tau_1-\text{int}(\alpha_2) = \alpha_1 \geq \alpha_2 \)

\(\tau_1-\text{cl}\tau_2-\text{int}\alpha_2 = \tau_1-\text{cl}\tau_2-\text{int}(1) = \tau_1-\text{cl}(1) = 1 \geq \alpha_2 \quad \therefore \alpha_2 \) is \((\tau_i, \tau_j)\)-fspo set.

\(f^{-1}(\alpha_3)(x) = \alpha_3 f(x) = \alpha_3(x) = \alpha_3 \), where \(\alpha_3 \) is fspo in \((X, \tau_1, \tau_2)\)
Similarly, it can be showed that α_2, α_1 are (τ_v, τ_j)-fspo set.

Which implies f is (τ_i, τ_j)-fpsp irresolute function.

Remark: From the above definition it is clear that the following implication are true:

$$
\tau_i\text{-fo}(\tau_i\text{-fc}) \rightarrow (\tau_i, \tau_j)\text{-fpo }((\tau_i, \tau_j)\text{-fpc}) \rightarrow (\tau_i, \tau_j)\text{-fspo}
$$

\Rightarrow fpsi function \rightarrow fpspi function.

Theorem 5.3. Let (X, τ_1, τ_2) be a fuzzy bitopological space and λ is a fuzzy set of X. Then λ is (τ_i, τ_j)-fuzzy semi preopen iff for each fuzzy point $x_{\beta} \in \lambda$ there exists a (τ_i, τ_j)-fuzzy semi pre open set μ such that $x_{\beta} \in \mu \leq \lambda$.

Proof: Obvious.

Theorem 5.4. Let $f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a function from one fbt space to another fbt space. Then the following conditions are equivalent.

(a) f is fuzzy pairwise semi pre-irresolute function.

(b) for every fuzzy point x_p of X and every (σ_i)-fuzzy semi pre-open set β in Y such that $f(x_p) \in \beta$ there is an (τ_i, τ_j)-fuzzy semi pre-open set α in X such that $x_p \in \alpha$ and $f(\alpha) \leq \beta$.

(c) for every fuzzy point x_p of X and every σi-fuzzy semi pre open set β such that $f(x_p)\in \beta$ there is an (τ_i, τ_j)-fspo set α in X such that $x_p \in \alpha$ and $f(\alpha) \leq \beta$.

(d) for every (σ_i)-fuzzy semi pre-closed set β. in Y, $f^1(\beta)$ is (τ_i, τ_j)-fuzzy semi pre-closed set α in X.

(e) (τ_i, τ_j)-spcl($f^1(v)$) \leq $f^1((\sigma_i)$-spcl v) for each fuzzy set v in Y.

(f) $f((\tau_i, \tau_j)$-spcl$\mu)$ \leq $((\sigma_i)$-spcl$)(f(\mu)$ for each fuzzy set μ in X.

Proof: (a)\Rightarrow(b)

Let x_p be a fuzzy point of X and β be a fuzzy semi pre-open set in Y such that $f(x_p) \in \beta$.

55
Put $\alpha = f^{-1}(B)$.

Then by (a) [definition], α is an (τ_i, τ_j)-fuzzy semi pre-open set in X such that $x_p \in \alpha$ and $f(\alpha) = ff^{-1}(\beta) \leq \beta$.

(b) \Rightarrow(a):

Let x_p be a fuzzy point of X and β be a fspo set in Y. Let $x_p \in f^{-1}(\beta)$. Then $f(x_p) \in \beta$.

Now by (b), there is an (τ_i, τ_j)-fuzzy pre-open set α in X such that $x_p \in \alpha$ and $f(\alpha) \leq \beta$.

Then $x_p \in \alpha \leq f^{-1}(\beta)$

Hence by theorem 5.3, $f^{-1}(\beta)$ is (τ_i, τ_j)-fuzzy semi pre-open set α in X. It means that f is fuzzy pairwise semi pre irresolute function.

(a) \Rightarrow(c): Let x_p be a fuzzy point of X and β be a fuzzy semi pre-open set in Y such that $f(x_p) \in \beta$.

Let $\alpha = f^{-1}(\beta)$, then α is (τ_i, τ_j)-fuzzy semi pre-open set in X [by (a)] and then $x_p \in \alpha$

And $f(\alpha) = ff^{-1}(\beta) \leq \beta$.

(c) \Rightarrow(a) Let δ be an σ_i-fuzzy semi pre-open set in Y and $x_p \in f^{-1}(\delta)$.

imply $f(x_p) \in \delta$.

Let the fuzzy point $x_p^c = 1 - x_p$, then $f(x_p^c) \in \delta$

Now by (c), there exists an (τ_i, τ_j)-fpso set α in X such that $x_p^c \in \alpha$ and $f(\alpha) \leq \delta$

Therefore, $x_p^c \in A \Rightarrow x_p^c + \alpha(x) > 1$

$\Rightarrow 1 - x_p + \alpha(x) > 1$

$\Rightarrow \alpha(x) > x_p$

$\Rightarrow x_p \in \alpha$

Thus $x_p \in \alpha \leq f^{-1}(\beta)$

Hence by theorem 5.3, $f^{-1}(\delta)$ is (τ_i, τ_j)-fspo set α in X

Thus f is a fuzzy pairwise semi pre-irresolute function.
(a) \Leftrightarrow (d): Obvious.

(d) \Rightarrow (e): Suppose (d) holds.

Let ν be a fuzzy set of Y.

Then $\nu \leq (\sigma_i$-spcl$\nu)$

And also, $f^{-1}(\nu) \leq f^{-1}(\sigma_i$-spcl$\nu)$,

Here f is fpspi mapping,

$\therefore f^{-1}(\sigma_i$-spcl$\nu)$ is a (τ_i, τ_j)-fspo set in X.

Hence

$$(\tau_i, \tau_j)$-spcl$(f^{-1}(\nu)) \leq (\tau_i, \tau_j)$-spcl$(f^{-1}(\sigma_i$-spcl$\nu)))$$

$$= f^{-1}(\sigma_i$-spcl$\nu))$$

(e) \Rightarrow (f): Let μ be a fuzzy set of X.

$\therefore f(\mu) \leq (\sigma_i$-spcl$\mu)$

and (τ_i, τ_j)-spcl$\mu \leq (\tau_i, \tau_j)$-spcl$(f^{-1}(f(\mu)))$

$$\leq f^{-1}(f(\mu))$$

$$\leq f^{-1}(\sigma_i$-spcl$\mu)$

$\Rightarrow f(\tau_i, \tau_j)$-spcl$\mu \leq f(f^{-1}(\sigma_i$-spcl$\mu)))$

$$\leq (\sigma_i$-spcl$\mu)$

Hence proved.

(f) \Rightarrow (a): Let η be a (σ_i)-fuzzy semi pre closed set of Y.

Then $f(\tau_i, \tau_j)$-spcl$(f^{-1}(\eta)) \leq (\sigma_i)$-spcl$(f^{-1}(\eta))$

$$\leq (\sigma_i)$-spcl$ (\eta))$$

$$= \eta$$

$\Rightarrow (\tau_i, \tau_j)$-spcl$(f^{-1}(\eta)) \leq f^{-1}(\tau_i, \tau_j)$-spcl$$(f^{-1}(\eta))$
Some fuzzy functions in fuzzy bitopological spaces and separation axioms in completely induced fuzzy bitopological spaces

\[\Rightarrow \quad f^{-1}(\eta) \leq f^{-1}(\eta) \]

\[\therefore f^{-1}(\eta) \text{ is a } (\tau_i, \tau_j)\text{-fspc set of } X \]

Hence \(f \) is a fuzzy pairwise semi pre irresolute function.

Theorem 5.5. If \(f : (X, \rho_1, \rho_2) \rightarrow (Y, \tau_1, \tau_2) \) and \(g: (Y, \tau_1, \tau_2) \rightarrow (Z, \sigma_1, \sigma_2) \) are two fuzzy pairwise semi pre-irresolute functions then \(gof : X \rightarrow Z \) is also fuzzy pairwise semi pre irresolute function.

Proof: Obvious. Since \((g \circ f)(\lambda) = g(f(\lambda)) \) for each fuzzy set \(\lambda \) of \(X \)

And \((g \circ f)^{-1}(\mu) = f^{-1}(g^{-1}(\mu)) \) for each fuzzy set \(\mu \) of \(Z \).

Theorem 5.6. A function \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is a fuzzy pairwise semi pre irresolute iff \(f^{-1}((\sigma_i)\text{-spint}\mu) \leq (\tau_i, \tau_j)\text{-spint}f^{-1}(\mu) \) for each fuzzy set \(\mu \) in \(Y \).

Proof: Suppose \(\mu \) is a fuzzy set in \(Y \). Then \(\sigma_i\text{-spint}\mu \leq \mu \).

Since \(f \) is fuzzy pairwise semi pre irresolute,

\[\therefore f^{-1}((\sigma_i)\text{-spint}\mu) \text{ is } (\tau_i, \tau_j)\text{-fuzzy semi preopen set in } X. \]

Hence \(f^{-1}((\sigma_i)\text{-spint}\mu) = (\tau_i, \tau_j)\text{-spint}(f^{-1}((\sigma_i)\text{-spint}\mu)) \)

\[\leq (\tau_i, \tau_j)\text{-spint}(f^{-1}(\mu)) \]

Conversely, let \(\mu \) be a \((\sigma_i)\text{-fuzzy semi preopen set in } Y \)

Then, \(f^{-1}(\mu) = f^{-1}((\sigma_i)\text{-spint}\mu) \)

\[\leq (\tau_i, \tau_j)\text{-spint}(f^{-1}(\mu)) \]

\(\Rightarrow f^{-1}(\mu) \) is a \((\tau_i, \tau_j)\text{-fuzzy semi preopen set in } X \). which indicates that \(f \) is fuzzy pairwise semi pre irresolute function.
Theorem 5.7. Let \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be a bijection. Then \(f \) is a fuzzy pairwise semi pre irresolute iff \((\sigma_i)\text{-spint}_{f(\mu)} \leq f((\tau_i, \tau_j)\text{-spint}_{\mu}) \) for each fuzzy set \(\mu \) in \(X \).

Proof: Let \(\mu \) be a fuzzy set in \(X \) then \(f(\mu) \) in \(Y \).

Then by the previous theorem,

\[
f^{-1}((\sigma_i)\text{-spint}_{\mu}) \leq (\tau_i, \tau_j)\text{-spint}_{f^{-1}(\mu)}
\]

Since \(f \) is bijection,

\[
((\sigma_i)\text{-spint}_{\mu}) \leq f(f^{-1}((\tau_i, \tau_j)\text{-spint}_{f^{-1}(\mu)})
\]

\[
\leq f((\tau_i, \tau_j)\text{-spint}_{f^{-1}(\mu)})
\]

\[
= f((\tau_i, \tau_j)\text{-spint}_{\mu})
\]

Conversely, let \(\alpha \) be a \((\sigma_i)\)-fuzzy semi preopen set in \(Y \)

Then,

\[
(\sigma_i)\text{-spint}_{f^{-1}(\alpha)}) \leq f((\tau_i, \tau_j)\text{-spint}_{f^{-1}(\alpha)})
\]

As \(f \) is bijection,

\[
(\sigma_i)\text{-spint}_{\alpha) \leq f((\tau_i, \tau_j)\text{-spint}_{f^{-1}(\alpha)}
\]

This implies,

\[
f^{-1}(\alpha) \leq f^{-1}((\tau_i, \tau_j)\text{-spint}_{f^{-1}(\alpha)})
\]

\[
\leq (\tau_i, \tau_j)\text{-spint}_{f^{-1}(\alpha)}
\]

Hence, the statement of previous theorem [5.6]

\(f \) is a fuzzy pairwise semi preopen function.

Theorem 5.8. Let \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) be a function from a fbts \(X \) to another fbts \(Y \). Then if the graph function \(g : (X, \tau_1, \tau_2) \rightarrow (X \times Y, \theta_1, \theta_2) \) of \(f \), defined by \(g(x) = (x, f(x)) \) for each \(x \in X \), is fpspi, then \(f \) is also fpspi.
Proof: Let \(\alpha \) be a \(\delta_i \)-fpsp set of \(Y \). Then by

\[
(\text{Lemma 2.4 in [1]}) : \text{Let } g : X \to X \times Y \text{ be the graph of a function } f : X \to Y, \text{ then if } \lambda \text{ is a fuzzy set of } X \text{ and } \mu \text{ is a fuzzy set of } Y.
\]

\[
g^{-1}(\lambda \times \mu) = \lambda \land f^{-1}(\mu)
\]

We have \(f^{-1}(v) = 1 \land f^{-1}(v) = g^{-1}(1 \times \alpha) \)

Since \(g \) is fpsp and \(1 \times \alpha \) is \(\theta_i \)-fpsp set of \(X \times Y \),

\(f^{-1}(\alpha) \) is a \((\tau_i, \tau_j)\)-fpsp set of \(X \).

This implies \(f \) is also fpsp.

Theorem 5.9. Let \((X_1, \tau_1, \tau_2), (X_2, \delta_1, \delta_2), (Y_1, \sigma_1, \sigma_2) \) and \((Y_2, \sigma_1, \sigma_2) \) be fbts’s such that \(X_1 \) is product related to \(X_2 \). Then the product \(f_1 \times f_2 : (X_1 \times X_2, \theta_1, \theta_2) \to (Y_1 \times Y_2, \beta_1, \beta_2) \) where \(\theta_i \) (resp \(\beta_k \)) is the fuzzy product topology generated by \(\tau_k \) and \(\delta_k \) (resp \(\omega_k \) and \(\sigma_k \)) (for \(k = 1, 2 \)) of fpsp function, where \(f_i : (X_i, \tau_i, \tau_2) \to (Y_i, \sigma_1, \sigma_2) \) and \(f_2 : (X_2, \delta_1, \delta_2) \to (Y_2, \sigma_1, \sigma_2) \) is fpsp.

Proof: Let \(W = \lor_{m,n} (U_m \times V_n) \),

Where \(U_m \)'s are \(\omega_i \)-fo sets of \(Y_1 \) and \(V_n \)'s are \(\sigma_i \)-fo sets of \(Y_2 \), be a \(\beta_i \)-fo sets of \(Y_1 \times Y_2 \).

\[
(\text{By Lemma 2.1 and Lemma 2.3 in [1]}) : \text{Let } f : X \to Y \text{ be a function and } \{\lambda_{\omega}\} \text{ be a family of fuzzy sets of } Y, \text{then } f^{-1}(\lor_{\omega}) = \lor f^{-1}(\lambda_{\omega})
\]

and for function \(f_i : X_i \to Y_i \) and fuzzy sets of \(Y_i \) \(i = 1, 2 \), we have

\[
(f_1 \times f_2)^{-1}(\lambda_1 \times \lambda_2) = f_1^{-1}(\lambda_1) \times f_2^{-1}(\lambda_2)
\]

Now

\[
(f_1 \times f_2)(W) = (f_1 \times f_2)^{-1}(\lor_{m,n} (U_m \times V_n))
\]

\[
= \lor_{m,n} (f_1 \times f_2)^{-1}(U_m \times V_n)
\]

\[
= \lor_{m,n} [f_1^{-1}(U_m) \times f_2^{-1}(V_n)]
\]

Since \(f_1, f_2 \) are fpsp, \(f^{-1}(U_m) \)'s are \((\tau_i, \tau_j)\)-fpsp sets of \(X_1 \) and \(f_2^{-1}(V_n) \)'s are \(\delta_i \)-fpsp sets of \(X_2 \).
We also know \(\lor \) and \(\land \) are closed under fspo sets and fspo sets are also closed under product topology.

It follows that

\[
(f_1 \times f_2)^{-1}(W) \text{ is a } (\theta_1, \theta_2)\text{-fspo set of } X_1 \times X_2. \text{ Hence } f \text{ is fpsi.}
\]

Fuzzy pairwise semi pre separated:

Definition. 5.10. Two non-empty subsets \(\lambda \) and \(\mu \) in fbts \((X, \tau_i, \tau_j)\) are said to be fuzzy pairwise semi pre separated if \((\tau_i, \tau_j) - \text{spcl} \lambda \land \mu \quad \text{and} \quad (\tau_i, \tau_j) - \text{spcl} \mu \land \lambda.\)

Theorem 5.11. Let two non-empty subsets \(\lambda \) and \(\mu \) are in fbts \((X, \tau_i, \tau_j)\). The following are true.

(i) If \(\lambda \) and \(\mu \) are fuzzy pairwise semi pre-seperated and \(\lambda^c \) and \(\mu^c \) are non empty fuzzy subsets such that \(\lambda^c \leq \lambda \) and \(\mu^c \leq \mu \), then \(\lambda^c \) and \(\mu^c \) are also fuzzy pairwise semi pre-seperated.

(ii) If \(\lambda \land \mu \) and either both are fuzzy pairwise semi pre-open or both are fuzzy pairwise semi pre-closed then \(\lambda \) and \(\mu \) are fuzzy pairwise semi pre-seperated.

(iii) If \(\lambda \land \mu \) and either both are fuzzy pairwise semi pre-open or both are fuzzy pairwise semi pre-closed then \(\lambda \land \mu^c \) and \(\mu \land \lambda^c \) are fuzzy pairwise semi pre-seperated.

Proof: (i) and (ii) are easy to proof.

(iii) Let \(\lambda \) and \(\mu \) are fuzzy pairwise semi pre-open. Then \(\lambda^c \) and \(\mu^c \) are fuzzy pairwise semi pre-closed.

Now,

\[
\lambda \land \mu^c \leq \mu^c
\]

\[
\Rightarrow (\tau_i, \tau_j) - \text{spcl} (\lambda \land \mu^c) \leq (\tau_i, \tau_j) - \text{spcl} \mu^c = \mu^c = 1 - \mu
\]

\[
\Rightarrow (\tau_i, \tau_j) - \text{spcl} (\lambda \land \mu^c) \not\subseteq \mu
\]
Hence, \((\tau_i, \tau_j) - \text{spcl}(\lambda \land \mu^c)q (\lambda \land \mu^c)\)

Similarly we can show that \((\tau_i, \tau_j) - \text{spcl}(\mu \land \lambda^c)q (\mu \land \lambda^c)\).

Hence, \(\lambda \land \mu^c\) and \(\mu \land \lambda^c\) are fuzzy pairwise semi-pre-separated.

Let \(\lambda\) and \(\mu\) are fuzzy pairwise semi-pre-closed, then

\[
\lambda = (\tau_i, \tau_j) - \text{spcl}\lambda \quad \text{and} \quad \mu = (\tau_i, \tau_j) - \text{spcl}\mu
\]

\[
\lambda \land \mu^c \leq \mu^c \Rightarrow (\tau_i, \tau_j) - \text{spcl} \quad \mu \land \mu(\lambda \land \mu^c)
\]

And therefore, \((\tau_i, \tau_j) - \text{spcl}(\mu \land \lambda^c)q (\mu \land \lambda^c)\).

Similarly, \((\tau_i, \tau_j) - \text{spcl}(\lambda \land \mu^c)q (\lambda \land \mu^c)\).

\(:. \lambda \land \mu^c\) and \(\mu \land \lambda^c\) are fuzzy pairwise semi-pre-separated.

Theorem 5.12. two non-empty subsets \(\lambda\) and \(\mu\) are in fbts \((X, \tau_i, \tau_j)\) are fuzzy pairwise semi-pre-separated iff there exists two fuzzy pairwise semi-pre-open subsets \(\lambda^c\) and \(\mu^c\) such that \(\lambda \leq \lambda^c\) and \(\mu \leq \mu^c\), \(\lambda q \mu^c\) and \(\mu q \lambda^c\).

Proof: Let \(\lambda\) and \(\mu\) are fuzzy pairwise semi-pre-separated subsets. Let \(\lambda^c = 1 - (\tau_i, \tau_j) - \text{spcl}\lambda\) and

\[
\mu^c = 1 - (\tau_i, \tau_j) - \text{spcl}\mu.
\]

Then \(\lambda^c\) and \(\mu^c\) are fuzzy pairwise semi-pre-open subsets such that \(\lambda \leq \lambda^c\) and \(\mu \leq \mu^c\)

[since \(\lambda q (\tau_i, \tau_j) - \text{spcl}\mu \Rightarrow \lambda \leq 1 - (\tau_i, \tau_j) - \text{spcl}\mu \Rightarrow \lambda \leq \lambda^c\). Similarly, \(\mu \leq \mu^c\)]

Since, \(\lambda \leq (\tau_i, \tau_j) - \text{spcl}\lambda \Rightarrow \lambda q 1 - (\tau_i, \tau_j) - \text{spcl}\lambda \Rightarrow \lambda q \mu^c\) and also can show that \(\mu q \lambda^c\).

Coversely, let \(\lambda^c\) and \(\mu^c\) are two fuzzy pairwise semi-pre-open subsets such that \(\lambda \leq \lambda^c\) and \(\mu \leq \mu^c\), \(\lambda q \mu^c\) and \(\mu q \lambda^c\).
Since $1-\lambda^c$ and $1-\mu^c$ are fuzzy pairwise semi-pre-closed, we have

$$(\tau_i, \tau_j) - \text{spcl} \lambda \leq 1-\mu^c \leq 1-\mu \text{ and } (\tau_i, \tau_j) - \text{spcl} \mu \leq 1-\lambda^c \leq 1-\lambda.$$

Hence, $$(\tau_i, \tau_j) - \text{spcl} \lambda g \mu \text{ and } (\tau_i, \tau_j) - \text{spcl} \mu g \lambda.$$

$\therefore \lambda$ and μ are fuzzy pairwise semi-pre-separated.