CHAPTER-6

IF g^*-CLOSED SETS AND IF T_a-SPACE

6.1 INTRODUCTION

IF generalized closed sets were studied by S. S. Thakur and Rekha Chaturvedi in [55]. IF semi generalized closed (IF sg-closed) sets were studied by S. S. Thakur and Jyoti Bajpai in [52, 53] as a generalization of the concept closed sets with the help of semi openness. IF regular closed (IFrgC) sets were introduced by S. S. Thakur and Rekha Chaturvedi in [57]. IF w-closed set was introduced by S. S. Thakur and Jyoti Prakash Bajpai in [54]. The concept of g^*-closed sets in fuzzy topological space was introduced by R. N. Bhumika and A. Hussin [10]. This concept in fuzzy topological space is also studied by S. S. Benchalli and G. P. Siddapur [9]. In topology the concept g^*-closed set is studied by N. Levine [38]. g^*-closed sets are also known as Strongly g-closed sets by A. Pushpalata and K. Anitha in [44].

In this chapter the concepts of IF g^*-closed sets and IF T_a separation axioms are introduced with the help of g^*-closed sets in IF topological spaces. Different properties of these concepts are also studied in this chapter.
6.2 IF g*-CLOSED SETS

In this section IF g*-closed sets are defined with the help of generalized closed sets. The relationship between IF g*-closed sets with IF closed sets, IF rg-closed sets, IF sg-closed sets, IF gs-closed sets, IF w-closed sets are established and different properties of IF g*-closed sets are also studied in this section.

Definition 6.2.1 An IF set A in the IF topological space \((X, \tau)\) is said to be IF g*-closed set if \(\text{cl}(A) \subseteq O\) whenever \(A \subseteq O\) and \(O\) is an IF g-open set.

An IF set A is said to be IF g*-open if and only if its complement \(A^c\) is IF g*-closed.

Theorem 6.2.2 In an IF topological space \((X, \tau)\) every IF g*-closed set is IF g- closed set.

Proof Let A be an IF g*-closed set and O be an IF open set in \((X, \tau)\) such that \(A \subseteq O\). Since O is IF open, O is IF g-open. A being IF g*-closed set, \(\text{Cl}(A) \subseteq O\), whenever \(A \subseteq O\) and O is an IF g-open. Hence, \(\text{Cl}(A) \subseteq O\), whenever \(A \subseteq O\) and O is an IF open set. Thus A is an IF g-closed set.

But the converse is not true as shown in the next example.

Example 6.2.3 Let \(X = \{a, b\}\) be a non empty set and \(U = \langle x, (a/0.6, b/0.5), (a/0.4, b/0.5) \rangle\) be an IF set in \(X\). Then the family \(\tau = \{0_\sim, 1_\sim, U\}\) is an IF topology on \(X\). Then the IF set \(V = \langle x, (a/0.1, b/0.3), (a/0.8, b/0.6) \rangle\) is IF g-closed but not IF g*-closed.
Theorem 6.2.4 In an IF topological space \((X, \tau)\) every IF \(g^*\)-closed set is IF \(rg\)-closed set.

Proof Let \(A\) be an IF \(g^*\)-closed set in \((X, \tau)\) such that \(A \subseteq O\) and \(O\) is an IF regular open. Since \(O\) is IF regular open, \(O\) is IF \(g\)-open. \(A\) being \(g^*\)-closed, \(\text{Cl}(A) \subseteq O\). Hence, \(\text{Cl}(A) \subseteq O\), whenever \(A \subseteq O\) and \(O\) is an IF regular open. Thus \(A\) is an IF \(rg\)-closed set.

But the converse is not true as shown in the next example.

Example 6.2.5 Let \(X = \{a, b\}\) be a non empty set and \(U = < x, (a/0.5, b/0.6), (a/0.4, b/0.4) >\) be an IF set in \(X\). Then the family \(\tau = \{0\sim, 1\sim, U\}\) is an IF topology on \(X\). Then the IF set \(A = < x, (a/0.5, b/0.4), (a/0.4, b/0.5) >\) is IF \(rg\)-closed but not IF \(g^*\)-closed.

Every IF \(g\)-closed set is IF \(rg\)-closed set [55], every IF closed set is IF \(W\)-closed set, every IF \(W\)-closed set is IF \(g\)-closed set as well as \(sg\)-closed set [54]. IF \(g^*\)-closed sets and IF \(W\)-closed sets are independent concepts. Hence the relation of IF \(g^*\)-closed sets with other types of closed sets are as follows:

\[
\begin{array}{c}
\text{IF regular closed set} \\
\downarrow \\
\text{IF closed set} \\
\downarrow \\
\text{IF } g^* \text{- closed set} \\
\downarrow \\
\text{IF } rg \text{- closed set} \\
\end{array} \quad \begin{array}{c}
\text{IF } W \text{- closed set} \\
\downarrow \\
\text{IF } g \text{- closed set} \\
\downarrow \\
\text{IF } sg \text{- closed set} \\
\end{array}
\]

However the converses are not true in general.
Theorem 6.2.6 An IF set A in an IF topological space \((X,\tau)\) is IF \(g^*\)-closed if and only if \(\text{cl}(A) \cap A^c\) does not contain any non null IF \(g\)-closed set.

Proof Let \(A\) be an IF \(g^*\)-closed and \(B\) be an IF \(g\)-closed set of \((X,\tau)\) such that \(B \subseteq (\text{cl}(A) \cap A^c)\). Then \(B^c\) is IF \(g\)-open and \(A \subseteq B^c\). So \(\text{cl}(A) \subseteq B^c\).

This implies \(B \subseteq (\text{cl}(A))^c\). So \(B \subseteq [(\text{cl}(A))^c \cap (\text{cl}(A) \cap A^c)] = 0\). Hence the condition is necessary.

Conversely, let \(A\) be an IF set in \((X,\tau)\) and \(\text{cl}(A) \cap A^c\) does not contain any non null IF \(g\)-closed set. Let \(A \subseteq O\) and \(O\) be an IF \(g\)-open. If \(\text{cl}(A)\) is not an IF subset of \(O\) then \(\text{cl}(A) \cap O \neq 0\). But \(\text{cl}(A) \cap O^c\) is a non null IF \(g\)-closed set contained in \(\text{cl}(A) \cap A^c\) a contradiction. So \(A\) is IF \(g^*\)-closed.

Theorem 6.2.7 Let \(A\) and \(B\) be IF \(g^*\)-closed sets in an IF topological space \((X,\tau)\). Then \(A \cup B\) is an IF \(g^*\)-closed set.

Proof Let \(O\) be an IF \(g\)-open set in \(X\), such that \(A \cup B \subseteq O\). Then \(A \subseteq O\) and \(B \subseteq O\). So \(\text{cl}(A) \subseteq O\) and \(\text{cl}(B) \subseteq O\). Therefore \(\text{cl}(A \cup B) \subseteq \text{cl}(A) \cup \text{cl}(B) \subseteq O\). Hence \(A \cup B\) is an IF \(g^*\)-closed set.

Remark 6.2.8 The intersection of two IF \(g^*\)-closed sets in an IF topological space \((X,\tau)\) may not be IF \(g^*\)-closed set.

Example 6.2.9 Let \(X = \{a, b\}\) be a non empty set and \(U = \langle x, (a/0.4, b/0.3), (a/0.5, b/0.4) \rangle\). Then the family \(\tau = \{0_\sim, 1_\sim, U\}\) is an IF
topology on X. Then IF sets \(A = < x, (a/0.5, b/0.3), (a/0.5, b/0.4) > \) and \(B = < x, (a/0.3, b/0.6), (a/0.6, b/0.4) > \) are IF g*-closed sets but \(A \cap B \) is not IF g*-closed.

Theorem 6.2.10 Let \(A \subseteq B \subseteq \cl(A) \) and \(A \) be an IF g*-closed set in an IF topological space \((X, \tau)\). Then \(B \) is IF g*-closed.

Proof Let \(O \) be IF g-open set in \(X \), such that \(B \subseteq O \). Then \(A \subseteq O \) and since \(A \) is IF g*-closed, \(\cl(A) \subseteq O \). Now \(B \subseteq \cl(A) \) implies \(\cl(B) \subseteq \cl(A) \subseteq O \). Consequently, \(B \) is IF g*-closed.

Theorem 6.2.11 An IF g*-closed and IF open set is IF closed.

Proof Let \(A \) be an IF g*-closed and IF open set. Then \(\cl(A) \subseteq O \), whenever \(A \subseteq O \) and \(O \) is IF g-open. Since IF open sets are IF g-open and \(A \subseteq O \), \(A \) may be considered as \(O \) such that \(\cl(A) \subseteq A \) that is \(\cl(A) = A \). Hence \(A \) is IF closed.

Theorem 6.2.12 Let \(A \) be an IF g*-closed set and \(x(\alpha, \beta) \) be an IF point in \((X, \tau)\) such that \(x(\alpha, \beta) \notin \cl(A) \). Then \(\cl(x(\alpha, \beta)) \notin A \).

Proof Let \(A \) be an IF g*-closed set and let \(x(\alpha, \beta) \notin \cl(A) \). If possible let \(\cl(x(\alpha, \beta)) \notin A \), then \(A \subseteq [\cl(x(\alpha, \beta))]^c \) where \([\cl(x(\alpha, \beta))]^c \) is IF open. Now since \(A \) is an IF g*-closed set, \(\cl(A) \subseteq [\cl(x(\alpha, \beta))]^c \subseteq [x(\alpha, \beta)]^c \). Therefore \(x(\alpha, \beta) \notin \cl(A) \), a contradiction to the hypothesis. Hence \(\cl(x(\alpha, \beta)) \notin A \).
Theorem 6.2.13 An IF set A in an IF topological space (X, τ) is IF g^*-open if and only if $O \subseteq \text{int}(A)$ whenever $O \subseteq A$ and O is an IF g-closed set.

Proof: Necessity Let A be an IF g^*-open and O be an IF g-closed set in X such that $O \subseteq A$. Then O^c is IF g-open and $A^c \subseteq O^c$. By hypothesis A^c is IF g^*-closed, so $\text{cl}(A^c) \subseteq O^c$. But $\text{cl}(A^c) = (\text{int}A)^c$. Hence $(\text{int}A)^c \subseteq O^c$ or $O \subseteq \text{int}(A)$.

Sufficiency Let O be an IF g-open set in X such that $A^c \subseteq O$. Then O^c is IF g-closed and $O^c \subseteq A$. Therefore by hypothesis $O^c \subseteq \text{int}(A)$. This implies $\text{cl}(A^c) = (\text{int}A)^c \subseteq O$. Hence A^c is IF g^*-closed and A is IF g^*-open in X.

Theorem 6.2.14 Let A be an IF g^*-open sub set in an IF topological space (X, τ) and $\text{int}(A) \subseteq B \subseteq A$. Then B is IF g^*-open.

Proof Since $A^c \subseteq B^c \subseteq \text{cl}(A^c)$ and A^c is IF g^*-closed it follows that B^c is IF g^*-closed. Thus B is IF g^*-open.

Remark 6.2.15 The union of two IF g^*-open sets may not be IF g^*-open set.

Example 6.2.16 Let $X = \{a, b\}$ be a non empty set and $U = \langle x, (a/0.4, b/0.4), (a/0.6, b/0.5) \rangle$ be an IF set in X. Then the family $\tau = \{0_-, 1_-, U\}$ is an IF topology on X. Then IF sets $C = \langle x, (a/0.6, b/0.4), (a/0.3, b/0.5) \rangle$ and $D = \langle x, (a/0.7, b/0.5), (a/0.5, b/0.3) \rangle$ are IF g^*-open sets but $C \cup D$ is not IF g^*-open.
Theorem 6.2.17 Let A and B be q-separated IF g^*-open sets in an IF topological space (X,τ). Then $A \cup B$ is an IF g^*-open.

Proof Let O be IF g^*-closed in X and $O \subseteq A \cup B$. Then $O \cap \text{cl}(A) \subseteq A$. Since $B \cap \text{cl}(A) = \emptyset$, hence $O \cap \text{cl}(A) \subseteq \text{int}(A)$ and $O \cap \text{cl}(B) \subseteq \text{int}(B)$. Now $O = O \cap (A \cup B) \subseteq (O \cap \text{cl}(A)) \cup (O \cap \text{cl}(B)) \subseteq (\text{int}(A) \cup \text{int}(B)) \subseteq \text{int}(A \cup B)$. Hence $O \subseteq \text{int}(A \cup B)$. Thus $A \cup B$ is IF g^*-open.

Notation 6.2.18 In an IF topological space (X,τ), let $\text{IFGCS}(X)$ (respectively $\text{IFGOS}(X)$) be denoted by the family of all IF g-closed (respectively IF g-open) sets of X.

Theorem 6.2.19 In an IF topological space (X,τ) if $\text{IFGCS}(X) = \text{IFGOS}(X)$ and every IF g-closed set is IF closed then every IF subset of X is IF g^*-closed.

Proof Let A be an IF sub set of X and $A \subseteq O$ and O be IF g-open. Since $\text{IFGCS}(X) = \text{IFGOS}(X)$, O is IF g-closed also. According to the hypothesis O is IF closed. Hence $\text{cl}(A) \subseteq \text{cl}(O) = O$ and A is an IF g^*-closed set.

Theorem 6.2.20 In an IF topological space (X,τ) if every IF subset of X is IF g^*-closed then $\text{IFGCS}(X) = \text{IFGOS}(X)$.

Proof Assume that every subset of (X,τ) is IF g^*-closed and A is an IF g-open set in X. Since every IF g^*-closed set is IF g-closed set, hence $A \in \text{IFGCS}(X)$. Thus $\text{IFGOS}(X) \subseteq \text{IFGCS}(X)$. Again we assume that A is
an IF g-closed set in X then $A^c \in \text{IFGOS}(X) \subseteq \text{IFGCS}(X)$. Therefore $A \in \text{IFGOS}(X)$, consequently $\text{IFGCS}(X) \subseteq \text{IFGOS}(X)$. Hence $\text{IFGOS}(X) = \text{IFGCS}(X)$.

Theorem 6.2.21 Let A and B be IF g*-closed sets in an IF topological space (X,τ) and suppose A^c and B^c are q-separated. Then $A \cap B$ is IF g*-closed.

Proof Since A^c and B^c are q-separated IF g*-open sets, by theorem 6.2.17, $A^c \cup B^c = (A \cap B)^c$ is IF g*-open. Hence $A \cap B$ is IF g*-closed.

Definition 6.2.22 Two IF sets A and B in an IF topological space (X,τ) are weakly separated if and only if there exists two IF open sets C, D such that $A \subseteq C$, $B \subseteq D$ and $A \cap D = B \cap C = 0^\sim$.

Theorem 6.2.23 In an IF topological space (X,τ), union of two weakly separated IF g*-open sets is IF g*-open.

Proof Let A and B be two weakly separated IF g*-open sets. Since A and B are IF weakly separated then there exists two IF g-open sets C, D such that $A \subseteq C$, $B \subseteq D$ and $A \cap D = B \cap C = 0^\sim$. Let $O_1 = C^C$ and $O_2 = D^C$. Then O_1 and O_2 are IF g-closed sets such that $A \subseteq O_1$ and $B \subseteq O_2$. Again since A and B are IF g*-open then there exists two IF g-closed sets P, Q such that $P \subseteq \text{int}(A)$ and $Q \subseteq \text{int}(B)$ whenever $P \subseteq A$ and $Q \subseteq B$. Then $P \cup Q \subseteq A \cup B$ and $P \cup Q \subseteq \text{int}(A) \cup \text{int}(B) = \text{int}(A \cup B)$. Now assume that $R \subseteq A \cup B$ is an IF g-closed set. Now $R = R \cap (A \cup B) \subseteq (R \cap O_1) \cup (R \cap O_2)$, where $R \cap O_1$ and $R \cap O_2$ are IF g-closed sets. Also
R \cap O_1 \subseteq (A \cup B) \cap O_1 \subseteq B. Hence R \cap O_1 \subseteq Q. Similarly R \cap O_2 \subseteq P. So R \subseteq P \cup Q \subseteq \text{int}(A \cup B). Hence A \cup B is IF g^* -open.

Theorem 6.2.24 For each x \in X, the IF point \{x(\alpha,\beta)\} is IF g-closed or its complement \{x(\alpha,\beta)\}^c is IF g^* -closed sets in an IF topological space (X,\tau).

Proof Let \{x(\alpha,\beta)\} be not IF g-closed in X. Then X is the only IF g-open set containing \{x(\alpha,\beta)\}^c. Also \text{cl}(\{x(\alpha,\beta)\}^c) \subseteq X, hence \{x(\alpha,\beta)\}^c is IF g^* -closed.

6.3 IF T^*_a-SPACE

In this section T^*_a-spaces in IF topological space are defined with the help of g^* -closed sets. It is proved that both IF T_{1/2} space and IF regular T_{1/2} space is an IF T^*_a-space and different properties of T^*_a-spaces are also studied in this section.

Definition 6.3.1 An IF topological space (X,\tau) is called an IF T^*_a-space if and only if every IF g^* -closed set in X is IF closed in X.

Theorem 6.3.2 Every IF T_{1/2} space is an IF T^*_a-space.

Proof Proof of the theorem follows from the fact that in an IF topological space (X,\tau) every IF g^* -closed set is an IF g-closed set and according to the definition of IF T_{1/2} space that a space (X,\tau) is IF T_{1/2} space if and only if every IF g-closed set in X is IF closed in X.
Theorem 6.3.3 Every IF regular $T_{1/2}$ space is an IF T_a-space.

Proof Proof of the theorem follows from the fact that in an IF topological space (X,τ) every IF regular $T_{1/2}$ space is IF $T_{1/2}$ space and by theorem 6.3.2 which states that every IF $T_{1/2}$ space is an IF T_a-space.

Definition 6.3.4 An IF g^*-closure operator of the IF set A is defined as

$$\text{Cl}^*(A) = \cap \{B : A \subseteq B \text{ and } B \text{ is IF } g^*\text{-closed set in } X\}.$$

Theorem 6.3.5 An IF set A in an IF T_a-space (X,τ) is IF g^*-open if and only if A is an IF neighbourhood of $x(\alpha,\beta)$ for each IF point $x(\alpha,\beta) \in A$.

Proof: Necessity Suppose that $x(\alpha,\beta)$ is an IF point of the IF g^*-open set A in X. Since X is an IF T_a-space, A is an IF open set in X. Then clearly A is an IF neighbourhood of $x(\alpha,\beta)$.

Sufficiency Suppose that A is an IF neighbourhood of each IF point $x(\alpha,\beta)$ of A. Since A is an IF neighbourhood of $x(\alpha,\beta)$, there exists an IF open set B in X such that $x(\alpha,\beta) \in B \subseteq A$. Now $A = \cup \{x(\alpha,\beta) : x(\alpha,\beta) \in A\} \subseteq \cup \{B_{x(a,b)} : x(\alpha,\beta) \in A\} \subseteq A$. This implies $A = \cup \{B_{x(a,b)} : x(\alpha,\beta) \in A \}$. Since each B is an IF open set, A is an IF open set.

Theorem 6.3.6 An IF set A in an IF T_a-space (X,τ) is an IF g^*-open set in X if and only if for each IF point $x(\alpha,\beta) \in A$, there exists an IF open set B in X such that $x(\alpha,\beta) \in B \subseteq A$.

Proof: Necessity Suppose that A is an IF g^*-open set in X. Then we can take $B = A$ so that $x(\alpha,\beta) \in B \subseteq A$ for each IF point $x(\alpha,\beta) \in A$.

92
Sufficiency Suppose that for each IF point $x(\alpha,\beta)$ there exists an IF g^*-open set A in X such that $x(\alpha,\beta) \in B \subseteq A$, where B is an IF open set in X. Then $A = \bigcup_{x(\alpha,\beta) \in A} \{ x(\alpha,\beta) \} \subseteq \bigcup_{x(\alpha,\beta) \in A} \{ B_x(\alpha,\beta) \} \subseteq A$. Therefore $A = \bigcup_{x(\alpha,\beta) \in A} \{ B_x(\alpha,\beta) \}$ is an IF open set and hence (X,τ) is an IF T_a-space.

Theorem 6.3.7 An IF topological space (X,τ) is IF T_a-space if $K = K^*$, where $K = \{ A : \text{cl} A^c \text{ is IF closed} \}$ and $K^* = \{ A : \text{cl}^* A^c \text{ is IF } g^*\text{-closed} \}$.

Proof Suppose that the IF topological space (X,τ) is IF T_a-space. Then $A \in K$ implies $\text{cl} A^c$ is IF closed implies $\text{cl} A^c$ is IF g^*-closed. Now, $\text{cl}^* A^c = \text{cl} A^c$ is also IF g^*-closed (since X is T_a-space). This implies that $A \in K^*$. Similarly we can show that $A \in K^*$ implies $A \in K$. Hence $K = K^*$.