INDEX OF FIGURE

Fig.-1 Calibration curve for protein estimation.

Fig.-2 Effect on various concentration of distillery effluent on percentage seed germination and percentage speed of seed germination in *Triticum aestivum* cv. PBW-343

Fig.-3 Effect on various concentration of distillery effluent on percentage seed germination and percentage speed of seed germination in *Zea mays* cv. Ganga-5

Fig.-4 Effect on various concentration of distillery effluent on percentage seed germination and percentage speed of seed germination in *Vigna radiata* cv. ML-5

Fig.-5 Effect on various concentration of distillery effluent on percentage seed germination and percentage speed of seed germination in *Vigna sinensis* cv. Type-2

Fig.-6 Dose response curve of 10 day old seedling of *Triticum aestivum* cv PBW-343 as affected by various concentrations of distillery effluent.

Fig.-7 Dose response curve of 10 day old seedling of *Zea mays* cv. Ganga-5 as affected by various concentrations of distillery effluent.

Fig.-8 Dose response curve of 10 day old seedling of *Vigna radiata* cv. ML-5 as affected by various concentrations of distillery effluent.

Fig.-9 Dose response curve of 10 day old seedling of
Vigna sinensis cv. Type-2 as affected by various concentrations of distillery effluent.

Fig.-10 Graph showing root-shoot growth (90th day) in *Triticum aestivum* cv. PBW-343

Fig.-11 Graph showing root-shoot growth (90th day) in *Zea mays* cv. Ganga-5.

Fig.-12 Graph showing root-shoot growth (90th day) in *Vigna radiata* cv. ML-5

Fig.-13 Graph showing root-shoot growth (90th day) in *Vigna sinensis* cv. Type-2

Fig.-14 Graph showing effect of two concentration of Distillery Effluents on Dry Weight of grain and Spikelet in *Triticum aestivum*.

Fig.-15 Graph showing effect of the concentration of Distillery Effluents on Cob and grain in *Zea mays*.

Fig.-16 Graph showing effect of the concentration of Distillery Effluents on Pod and Seed of *Vigna radiata*.

Fig.-17 Graph showing effect of the concentration of Distillery Effluents on Pod and Seed of *Vigna sinensis*.

Fig.-18 Graph showing effect of various concentrations of distillery effluents on grain Yield and percentage germination in *Triticum aestivum* (Wheat).

Fig.-19 Graph showing effect of various concentrations of distillery effluents on seed Yield and percentage germination in *Zea mays* (Maize).

Fig.-20 Graph showing effect of various concentrations
of distillery effluents on grain Yield and percentage germination in *Vigna radiata* (Mung).

Fig.-21 Graph showing effect of various concentrations of distillery effluents on seed Yield and percentage germination in *Vigna sinensis* (Lobiya).

Fig.-22 Graph showing effect of various concentrations of distillery effluents on pH of Leaf extracts of *Triticum aestivum* at 120th day.

Fig.-23 Graph showing effect of various concentrations of distillery effluents on pH of Leaf extracts of *Zea Mays* at 120th day.

Fig.-24 Graph showing effect of various concentrations of distillery effluents on pH of Leaf extracts of *Vigna radiata* at 90th day.

Fig.-25 Graph showing effect of various concentrations of distillery effluents on pH of Leaf extracts of *Vigna sinensis* at 90th day.

Fig.-26 Effect of certain concentration of distillery effluents on Leaf number and Total Chlorophyll (mg/gm) in *Triticum aestivum* (Wheat).

Fig.-27 Effect of certain concentration of distillery effluents on Leaf number and Total Chlorophyll (mg/gm) in *Vigna radiata* (Mung).

Fig.-28 Graph showing the effect of untreated distillery effluents on net dry weight (gm) of Wheat, maize Mung & Lobiya.