CHAPTER 1 REVIEW OF LITERATURE

1.1 Introduction
1.1.1 Candida albicans – as a commensal and opportunistic pathogen 1
1.1.2 Candidiasis – a rising medical threat 1
1.1.3 Need for new antifungals 2
1.1.4 Search for novel drug targets 3

1.2 C. albicans as a model fungal pathogen 3
1.2.1 Diversity of C. albicans as a commensal and pathogen 3
1.2.2 Virulence factors of Candida albicans 3
 1.2.2.1 Adhesion to host tissues 4
 1.2.2.2 Secretion of proteinases and other hydrolases 5
 1.2.2.3 Yeast to hyphal transition 5
 1.2.2.4 Phenotype switching 6
1.2.3 Virulence genes as potential drug targets 6
1.2.4 Genetic tractability of C. albicans 7
1.2.5 Genome sequence of C. albicans 7
1.2.6 Differences with respect to S. cerevisiae 8
1.2.7 Animal models for localised and systemic candidiasis 9
 1.2.7.1 Role of kidney in systemic candidiasis 9

1.3 Strategies and tools to study gene function in C. albicans 10
1.3.1 Technical difficulties/limitations of C. albicans genetics 10
1.3.1.1 Variations at genome and gene level 11
1.3.2 Strains and selection markers to study gene function 11
1.3.3 Selection cassettes for gene deletion/disruption 12
 1.3.3.1 URA blaster strategy 13
 1.3.3.2 Flipper cassettes 13
 1.3.3.3 One step gene disruption 14
1.3.4 Generation of gene disruption/deletion constructs 15
 1.3.4.1 Cloning based approach 15
 1.3.4.2 PCR based strategies 16
1.3.5 Gene expression strategies 17
 1.3.5.1 Regulatable promoters 18
 1.3.5.2 Reporter genes 19
 1.3.5.3 In vivo expression technology 20
1.4 Large scale genetic analysis in *C. albicans*

1.4.1 Technical limitations 21

1.4.2 Transposon as tools for large scale forward genetic studies 22
 1.4.2.1 Advances in transposon technology 22
 - Signature-tagged mutagenesis 22
 - In vitro mutagenesis 23
 - Generation of homozygous mutant collection and test of essentiality 24

1.4.3 Other advances in large scale genetic studies 24
 1.4.3.1 REMI 24
 1.4.3.2 GRACE 25

1.4.4 DNA Microarrays 25

1.4.5 Approaches/strategies for genome wide studies in *C. albicans* 26
 1.4.5.1 Haploinsufficiency Phenomenon 27
 1.4.5.2 Post-transcriptional gene silencing 28
 - Antisense Technology 29

CHAPTER 2 MATERIALS AND METHODS

2.1 Materials 31

2.1.1 Chemicals and Reagents 31

2.1.2 Growth media 31

2.1.3 Antibiotics 31

2.1.4 Buffers and Solutions 32

2.1.5 Oligonucleotides used in this study 32

2.1.6 Plasmids used/constructed in this study 32
 2.1.6.1 Construction of plasmid harbouring SAT1 flipper amenable to directional ligation 32

2.1.7 *C. albicans* strains used/constructed in this study 32
 2.1.7.1 Generation of His'Arg'Ura'ADE2 heterozygous mutant 32

2.2 Methods 33

2.2.1 Recombinant DNA methods 33

2.2.2 Isolation of plasmid DNA 33

2.2.3 PCR 34
 2.2.3.1 Colony PCR for *E. coli* 34
 2.2.3.2 ‘Hot start’ PCR 34
 2.2.3.3 PCR amplification of DNA fragments from genomic DNA of *C. albicans* 34

2.2.4 In vitro transposition using Tn5-based ‘promoter-out’ transposons 35

2.2.5 DNA Sequencing 35

2.2.6 Colony hybridization 35

2.2.7 Southern Blotting 36

2.2.8 *Candida* genomic DNA isolation 37

2.2.9 Transformation of *C. albicans* 38
2.2.9.1 Lithium acetate transformation 38
2.2.9.2 Electroporation 38
2.2.10 Excision of URA3/SAT1 flipper cassettes 39
2.2.11 Dilution Spotting 39
2.2.12 Growth monitoring 39
2.2.13 Directional-ligation approach to introduce long flanks 40
 a) Generation of marker cassette with partial filled-in ends 40
 b) PCR amplification of the flanks 40
 c) Trimming of the flanks 40
 d) Ligation reaction 40
2.2.14 Generation of strains with HAH1/HAH1-RP integrated C. albicans strains 41
 a) PCR amplification of split markers 41
 b) Transformation of split markers 41
 c) Selection of targeted integrants, and of His+Arg+ segregants 42
2.2.15 Determination of recombination rates 42
2.2.16 Systemic Candida infection in mice 43
 a) Preparation of culture 43
 b) Intravenous infection 43
 c) Monitoring of mice 43
 d) Recovery of cells from infected mice 44

CHAPTER 3 EXPLORATION OF ANTISENSE STRATEGY AS A TOOL TO IDENTIFY GENES IMPORTANT FOR SURVIVAL AND VIRULENCE OF Candida albicans

INTRODUCTION 45

RESULTS 48
3.1 Study of antisense effect in vitro using regulatable promoters 48
 3.1.1 Target genes 48
 3.1.2 Regulatable promoters 49
 3.1.3 Construction of “sense” and “antisense” cassettes with regulatable promoters 49
 3.1.4 Generation of heterozygous “sense” and “antisense” disruption mutants 50
 3.1.5 Growth of heterozygous “sense” and “antisense” disruption mutants on solid media 51
 3.1.6 Antisense effect of regulatable promoters in liquid broth 51
 3.1.6.1 Antisense effect of regulatable promoters at ADE2 locus 51
 3.1.6.2 Effect of regulatable promoter at RHO1 locus 52
Table of Contents

3.2 Study of efficacy of “antisense” transposons in vitro

3.2.1 Promoter used 53
3.2.2 Antisense effect of SAP2 promoter in vitro 53
 3.2.2.1 In vitro transposition and cloning of EZ::CaTN<\(P_{SAP2}\)\(URA3\)-TET> in ADE2 and RHO1 genes 54
 3.2.2.2 Generation of transposon insertion heterozygous mutants in *C. albicans* 54
 3.2.2.3 SAP2 based antisense effect at ADE locus 55
 3.2.2.4 SAP2 based antisense effect at RHO1 locus 56

3.3 Study of efficacy of antisense effect in vivo

3.3.1 Target gene and promoter used 57
3.3.2 Generation of \(FAS2\) heterozygous insertion mutants 58
3.3.3 Optimisation of virulence studies in mice 59
3.3.4 Antisense effect of \(P_{SAP5}\) at \(FAS2\) in vivo 59

3.4 Study of antisense effect using strong, constitutive promoters in vitro

3.4.1 Promoters used 60
3.4.2 Cloning of \(TEF1\) and \(TDH1\) promoters and generation of \(P_{TDH1}\) and \(P_{TEF1}\) based heterozygous mutants 61
3.4.3 Antisense effect of \(P_{TEF1}\) and \(P_{TDH1}\) at \(ADE2\) locus 61

3.5 Construction of “antisense” transposons for identification of virulence genes

3.5.1 Requisite features 62
3.5.2 \(P_{SAP2}\) and \(P_{SAP5}\) based transposons 63
3.5.3 \(P_{TDH1}\) and \(P_{TEF1}\) based transposons 63

DISCUSSION

CHAPTER 4 REGULATED EXPRESSION OF BOTH ALLELES OF Candida albicans AFTER A SINGLE TRANSFORMATION TO IDENTIFY GENES IMPORTANT FOR SURVIVAL AND VIRULENCE

INTRODUCTION

RESULTS

4.1 Features and design of HAH1/HAH1-RP cassettes 70

4.2 Construction of gene disruption/ promoter replacement cassettes 72
 4.2.1 Cloning of HAH1 cassette 72
 4.2.2 Cloning of HAH1-\(P_{MAL2}\) and HAH1-\(P_{MET3}\) cassettes 72
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.3 Cloning of HAH1-PTET cassette</td>
<td>73</td>
</tr>
<tr>
<td>4.2.4 Construction of C. albicans tetracycline transactivator strain</td>
<td>73</td>
</tr>
<tr>
<td>4.3 Generation of gene deletion/promoter replacement split marker constructs for transformation</td>
<td>74</td>
</tr>
<tr>
<td>4.3.1 Generation of split marker constructs by directional ligation</td>
<td>75</td>
</tr>
<tr>
<td>4.3.2 Generation of split marker constructs by overlap extension PCR</td>
<td>75</td>
</tr>
<tr>
<td>4.3.3 Generation of split marker constructs by PCR using primers with microhomology to target gene</td>
<td>76</td>
</tr>
<tr>
<td>4.4 Use of HAH1 cassette for gene deletion</td>
<td>76</td>
</tr>
<tr>
<td>4.4.1 Deletion of ADE2 using HAH1</td>
<td>77</td>
</tr>
<tr>
<td>4.4.2 Determination of recombination frequency of His(^+)Arg(^+) segregants</td>
<td>77</td>
</tr>
<tr>
<td>4.5 Use of HAH1-RP cassettes as a tool to test essentiality of genes</td>
<td>78</td>
</tr>
<tr>
<td>4.5.1 Efficacy of HAH1-P(_{MAL2}) cassette</td>
<td>78</td>
</tr>
<tr>
<td>4.5.2 Efficacy of HAH1-RP cassettes to check essentiality of genes</td>
<td>79</td>
</tr>
<tr>
<td>4.5.3 Proportion of double segregants without wild type copy</td>
<td>80</td>
</tr>
<tr>
<td>4.5.4 Cidal versus static growth of double segregants</td>
<td>80</td>
</tr>
<tr>
<td>4.6 Use of HAH1-RP cassettes to assess genes required for virulence</td>
<td>81</td>
</tr>
<tr>
<td>4.6.1 Comparison of in vivo strength of HAH1-RP cassettes</td>
<td>81</td>
</tr>
<tr>
<td>4.6.2 HAH1-PTET cassette as a tool to study degree of virulence</td>
<td>82</td>
</tr>
<tr>
<td>4.6.2.1 In vivo regulation of HAH1-PTET cassette by doxycycline</td>
<td>82</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>83</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>88</td>
</tr>
<tr>
<td>BIBIOGRAPHY</td>
<td>92</td>
</tr>
</tbody>
</table>