Contents

1. Introduction 1-3
2. Review of literature 4-27
 2.1. Definition 4-6
 2.1.1. Herpes simplex keratitis 4
 2.1.2. Bacterial keratitis 5
 2.1.3. Peripheral ulcerative keratitis 5
 2.1.4. Superficial punctate keratitis 5
 2.1.5. *Acanthamoeba* keratitis 5
 2.1.6. Photokeratitis 6
 2.1.7. Interstitial keratitis 6
 2.1.8. Fungal keratitis 6
2.2. History of mycotic keratitis 6-7
2.3. Worldwide distribution 7
2.4. Predisposing factors 8-10
 2.4.1. Injury 8
 2.4.2. Prolonged chemo/immunosuppressive therapy 10
2.5. Diagnosis 10-15
 2.5.1. Conventional methods 11-14
 2.5.1.1. Clinical 11
 2.5.1.2. Direct smear examination 12
 2.5.1.3. Culture 13-13
 2.5.1.4. Histopathological examination 13-14
 2.5.2. Non-conventional methods 14
2.6. Problems in diagnosis 15
2.7. Recent advancement in diagnostic mycoses 15-19
 2.7.1. Immunological 15-16
 2.7.2. DNA based 16-19
2.8. Suitability, promptness and adaptability of a method 19
2.9. Treatment 19-21
2.10. Tears 21-26
 2.10.1. Lactoferin 22
 2.10.2. Phospholipase A2 23
 2.10.3. Beta defensins 23
 2.10.4. Mucin 24
 2.10.5. Surfactant protein D 24
 2.10.6. Immunoglobulin A 25
 2.10.7. Tear lipocalin 25
 2.10.8. Albumin 25-26
3. Materials and methods 27-46
 3.1. Fungal strains and their origin 27
 3.2. Development of animal model 28-31
 3.1.1. Passage culture 28
 3.1.2. Keratomycosis mouse model 28-30
 3.1.2.1. Colony forming unit (CFU) count 28
 3.1.2.2. Polymorphoneutrophils (PMNs) quantification 28
 3.1.2.3. Inflammatory cytokine level 29
3.1.2.3.1. Corneal epithelial cells isolation 29
3.1.2.3.2. RNA extraction 29
3.1.2.3.3. Reverse transcriptase PCR 29-30
3.1.2.3.4. IL-12 30
3.1.2.3.5. MIP-2 30
3.1.2.3.6. β actin 30

3.3. Development of fungal ulcer in rabbit 31
3.4. Extraction of fungal DNA 31-32
 3.4.1. Phenol:chloroform method 31
 3.4.2. DNeasy protocol 31
3.5. Obtaining clinical material 32
 3.5.1 DNA extraction from corneal scrapings 32
3.6. DNA isolation from negative controls 33
 3.6.1. Corneal tissue 33
 3.6.2. Bacteria 33
3.7. Polymerase chain reaction (PCR) 33-36
 3.7.1. Internal transcribed spacer regions 33-34
 3.7.1.1. Internal transcribed spacer region I 33
 3.7.1.2. Internal transcribed spacer region II 33
 3.7.1.3. Complete internal transcribed spacer region 34
 3.7.2. Intergenic spacer region 34
 3.7.3. Large sub unit 35
 3.7.4. Small sub unit 35
 3.7.5. Nested PCR 35-36
 3.7.5.1. Large subunit 35
 3.7.5.2. Small subunit 36
3.8. Denaturing gradient gel electrophoresis (DGGE) 36-37
3.9. Single stranded conformation polymorphism (SSCP) analysis 37
3.10. Amplified ribosomal DNA restriction analysis (ARDRA) 37-38
3.11. Staining and analysis of SSCP, ARDRA and DGGE gels 38-39
3.12. Sequencing 39
3.13. Antifungal activity of different antifungals against patient isolates of keratomycosis 39-40
3.14. Tear collection 40-41
3.15. Anti fungal activity of tears against Aspergillus fumigatus 41
3.16. N-terminal sequencing 41
 3.16.1. Electrotransfer of protein on polyvinylidene difluoride (PVDF) membrane 41
3.17. Generation of antibodies 41-44
 3.17.1. Immunization of mice 42
 3.17.2. Enzyme linked immunosorbant assay (ELISA) 42
 3.17.3. Immunoblotting 43
 3.17.4. Cross reactivity with albumin of different origin 43-44
3.18. Isolation of cell wall proteins from fungal isolates 44-45
3.19. Isolation of corneal epithelial protein 45
3.20. Ligand blotting 45
3.21. Purification of ABPs 45-46

4. Results 47-73
 4.1. Experimental fungal keratitis 47
4.1.1. Mouse model
4.1.2. Rabbit model
4.2. Human cases of mycotic keratitis
4.3. rDNA based diagnosis of mycotic keratitis
 4.3.1. Fungal culture and DNA isolation
 4.3.2. DNA isolation from corneal scrapings of rabbit and human patients
 4.3.3. Polymerase chain reaction
4.4. Denaturing gradient gel electrophoresis (DGGE)
4.5. Single stranded conformation polymorphism (SSCP)
 4.5.1. Non-coding region
 4.5.2. Coding region
4.6. Minimum inhibitory concentration of standard antifungals against patient isolates of mycotic keratitis
4.7. Tear collection
4.8. Antifungal activity of tears against Aspergillus fumigatus
4.9. Identification of 67 kDa over expressed protein
4.10. Antibody production
4.11. Cross reactivity
4.12. Fungal cell wall proteins
4.13. Corneal epithelial proteins
4.14. Ligand binding
4.15. Purification of proteins
5. Discussion
6. Reference
7. Appendix
 7.1. Human cases
 7.2. Sequence alignments