CONTENTS

SR NO. TITLE PAGE
1. Abstract: (i)
2. Acknowledgements (ii)
3. List of Tables (iii)
4. List of Figures (iv)

CHAPTER - 1 INTRODUCTION
1.1 Industrialisation and economic development 1
1.2 Inventory : Basic concepts: 12
1.3 Factors affecting inventory control 13
1.4 Description of the research efforts: 15

CHAPTER - 2 THEORETICAL FRAMEWORK OF THE STUDY
2.1.1 Objectives of the inventory control 16
2.1.2 Objectives of the proposed research 17
2.1.3 Classes of inventory 18
2.1.4 Relative costs in inventory systems 18
2.1.5 Different inventory systems 19
2.1.6 Parameters and factors identified in inventory models 19
2.1.7 Dependent-independent demand relationships: 20

PART - 2.2 PRODUCTIVITY AND ITS SIGNIFICANCE
2.2.1 Productivity : the nature and significance 24
2.2.2 Factors affecting productivity 25
2.2.3 Organisational determinants of production inventory 25
2.2.4 Causes of productivity decline in industries 26
2.2.5 Productivity models 27
2.2.6 Productivity indicators by functional departments
2.2.7 Techniques for improving program of productivity process
2.2.8 The (Basic) Total Productivity Model
2.2.9 Salient features of TPM
2.2.10 Basic productivity improvement techniques
2.2.11 Methodology of enhancing productivity in small enterprises by inventory-based productivity improvement techniques
2.2.12 Scope for selecting inventory-based productivity improvement techniques
2.2.13 Principles of productivity improvement
2.2.14 Productivity culture of organisations
2.2.15 Building of productivity culture
2.2.16 A comprehensive set of premises for organizing productivity improvement program

C—2.3 REVIEW OF THE CURRENT LITERATURE
2.3.1 Characteristics of the lot-sizing problems
2.3.2 Growth vis-à-vis sickness in SSIs in India
2.3.3 Growing sickness in SSIs
2.3.4 Productivity levels of manufacturing sector in selected Asian countries
2.3.5 Capital productivity in India
2.3.6 Wasteful practices in Indian manufacturing
2.3.7 Strategies to increase productivity
2.3.8 Productivity increase in materials flow
2.3.9 A comparison of Japanese and Indian situations

CHAPTER 3 RESEARCH METHODOLOGY
3.1 Research design
3.2 Sampling design
3.3 Data collection and instrument design
3.3.1 Data collection
3.3.2 Procedure of data collection
3.3.3 Analysis design

3.4 Inventory control models
 3.4.1 Single level product lot sizing methods
 3.4.2 EOQ lot sizing method
 3.4.3 Lot for lot ordering method
 3.4.4 Periodic order quantity method
 3.4.5 Wagner-Whitin algorithm method
 3.4.6 Least unit cost method
 3.4.7 Part-period balancing method
 3.4.8 Silver-Meal method

3.5 Comparison of performance of lot sizing methods
3.6 Other approaches to single-level product inventory policy determination

CHAPTER 4 RESEARCH ANALYSIS AND FINDINGS

4.1 Demographic Information of samples studies
 4.1.1 Place vs number of industries
 4.1.2 Number of industries vs year of establishment
 4.1.3 Annual sales turnover vs number of industries
 4.1.4 Qualifications vs number of respondents
 4.1.5 Years of experience in industrial environment
 4.1.6 Raw materials from different locations
 4.1.7 Time required for processing a product
 4.1.8 Different types of contracts engaged by industries

4.2 Research findings
7.2 Bibliography

CHAPTER 8 APPENDICES

A: Industrial scenario of Amravati district
B: Statewise distribution of SSI units vis-a-vis sick units
C: List of industries
D: Mathematical models
E: ABC analysis of an engineering industry
F: t-test for level of significance
G: Questionnaire
H: List of C-programs
LIST OF FIGURES

<table>
<thead>
<tr>
<th>SR NO.</th>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td></td>
<td>Classification of industries</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td>Institutions assisting small industries</td>
<td>11</td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td>Elements of an inventory control system</td>
<td>19</td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td>Inventory distribution of 4 industries</td>
<td>19</td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td>Dependent-independent demand relationships</td>
<td>22</td>
</tr>
<tr>
<td>1.6</td>
<td></td>
<td>Time phased planning</td>
<td>23</td>
</tr>
<tr>
<td>2.1</td>
<td></td>
<td>Productivity benefit model</td>
<td>28</td>
</tr>
<tr>
<td>2.2</td>
<td></td>
<td>Distribution of cost in a manufacturing organisation</td>
<td>40</td>
</tr>
<tr>
<td>2.3</td>
<td></td>
<td>Examples of single & multiple paths</td>
<td>52</td>
</tr>
<tr>
<td>2.4</td>
<td></td>
<td>Inventory depletion for discrete & continuous demand</td>
<td>53</td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td>Productivity level of manufacturing sector in selected Asian countries</td>
<td>58</td>
</tr>
<tr>
<td>2.6</td>
<td></td>
<td>Basic strategies to increase productivity</td>
<td>64</td>
</tr>
<tr>
<td>4.1.1</td>
<td></td>
<td>Place vs number of industries</td>
<td>95</td>
</tr>
<tr>
<td>4.1.2</td>
<td></td>
<td>Number of industries vs year of establishment</td>
<td>95</td>
</tr>
<tr>
<td>4.1.3</td>
<td></td>
<td>Annual sales turnover vs number of industries</td>
<td>96</td>
</tr>
<tr>
<td>4.1.4</td>
<td></td>
<td>Qualifications vs number of respondents</td>
<td>97</td>
</tr>
<tr>
<td>4.1.5</td>
<td></td>
<td>Years of experience in industrial environment</td>
<td>97</td>
</tr>
<tr>
<td>4.1.6</td>
<td></td>
<td>Raw materials from different locations</td>
<td>97</td>
</tr>
<tr>
<td>4.1.7</td>
<td></td>
<td>Time required for processing a product</td>
<td>98</td>
</tr>
<tr>
<td>4.1.8</td>
<td></td>
<td>Different types of contracts engaged by industries</td>
<td>99</td>
</tr>
</tbody>
</table>
LIST OF TABLES:

<table>
<thead>
<tr>
<th>SR. NO</th>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1</td>
<td>Classification of industries</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1.2</td>
<td>SSI: Growth and performance</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1.3</td>
<td>Status of industries in Amravati district</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2.1</td>
<td>Most commonly used productivity indicators in the manufacturing function (industrial companies)</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>2.2</td>
<td>Most commonly used productivity indicators in the purchasing function (industrial companies)</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>2.3</td>
<td>Most commonly used productivity indicators in the engineering function (industrial companies)</td>
<td>31</td>
</tr>
<tr>
<td>7</td>
<td>2.4</td>
<td>Productivity indicators in the industrial companies- A summary</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>2.5</td>
<td>Productivity indicators in the non-industrial companies</td>
<td>33</td>
</tr>
<tr>
<td>9</td>
<td>2.6</td>
<td>Comparison of attributes in Japanese and Indian industries</td>
<td>53</td>
</tr>
<tr>
<td>10</td>
<td>2.8</td>
<td>Indicators of growth in small scale sector</td>
<td>53</td>
</tr>
<tr>
<td>11</td>
<td>3.1</td>
<td>Summary of comparisons of the performance of the single level lot sizing methods</td>
<td>83</td>
</tr>
<tr>
<td>12</td>
<td>3.2</td>
<td>Summary of approaches for determination of optimal inventory policies.</td>
<td>94</td>
</tr>
<tr>
<td>13</td>
<td>4.1</td>
<td>ABC analysis of an engineering unit</td>
<td>144</td>
</tr>
</tbody>
</table>
4.1.9 Discounts vs quantity of purchases analysis 100
4.1.10 Sources of developing new suppliers 100
4.1.11 Reasons of customer satisfaction 101
4.1.12 Probable causes of rejections 101
4.1.13 Bottlenecks in production capacity utilisation 102
4.1.14 Periodic reporting of items 103
4.1.15 Periodic record maintenance 103
4.1.16 Recording of perpetual inventory stock maintenance 104
4.1.17 Period of stock of raw materials in stores 105
4.1.18 Period of stock of work-in-progress in stores 105
4.1.19 Period of stock of finished goods inventory in stocks 106