# CHAPTER 2

## **ODD MEAN LABELINGS OF GRAPHS\***

#### 2.1 INTRODUCTION

A graph in this paper shall mean a simple finite graph without isolated vertices. The terminology and notions used here are in the sense of Harary [18]. A labeling of a graph G is an assignment f of labels to either the vertices or the edges of G that induces for each edge uv in the former a label depending on the vertex labels f(u) and f(v) and in the latter for each vertex u a label depending on the labels of the edges incident with it. The oldest and more popular vertex labeling is the one introduced by Rosa [30] in 1967 and R.B. Gnanajothi [14] introduced odd graceful graphs. S. Somasundaram and R. Ponraj [36] introduced the concept of mean graphs. Motivated by these works, we define odd mean labelings of graphs and investigate the odd mean behaviour of certain standard graphs.

<sup>\*</sup>The contents of this chapter are published in Bulletin of Pure and Applied Sciences, 25E(1)(2006), 149-153.

### 2.2 ODD MEAN LABELINGS

**Definition 2.2.1.** A graph G with p vertices and q edges is said to be odd mean if there exists a function f from the vertex set of Gto  $\{0, 1, 2, 3, \ldots, 2q - 1\}$  satisfying f is 1-1 and the induced map  $f^*$ from the edge set of G to  $\{1, 3, 5, \ldots, 2q - 1\}$  defined by

$$f^{*}(uv) = \begin{cases} \frac{f(u)+f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \\ \frac{f(u)+f(v)+1}{2} & \text{if } f(u) + f(v) \text{ is odd,} \end{cases}$$

is a bijection.

The following is a simple example of odd mean graph.



### 2.3 SOME PRELIMINARY THEOREMS

In this section we prove some basic theorems on odd mean graph.

**Result 2.3.1.** If G is a harmonious graph with harmonious labeling f, then  $\sum_{v \in V(G)} d(v)f(v) = \binom{q}{2} \pmod{q}$ .

Motivated by this, we prove the following theorems.

**Theorem 2.3.2.** Let G be an odd mean graph with odd mean labeling f. Let t be the number of edges whose one vertex label is even and the other is odd. Then  $\sum_{v \in V(G)} d(v)f(v) + t = 2q^2$  where d(v)denotes the degree of a vertex.

*Proof.* We have

$$f^{*}(xy) = \begin{cases} \frac{f(x)+f(y)}{2} & \text{if } f(x) + f(y) \text{ is even} \\ \frac{f(x)+f(y)+1}{2} & \text{if } f(x) + f(y) \text{ is odd.} \end{cases}$$

$$\sum_{v \in V(G)} d(v)f(v) = 2\left(\sum_{xy \in E(G)} f^*(xy) - \frac{t}{2}\right)$$
$$= 2(1+3+5+\dots+(2q-1)) - t$$
$$= 2q^2 - t.$$

Hence  $\sum_{v \in V(G)} d(v)f(v) + t = 2q^2.$ 

As an illustration, we consider  $P_6 = v_1 v_2 v_3 v_4 v_5 v_6$ .

Define  $f: V(P_6) \to \{0, 1, 2, 3, \dots, q\}$  by

 $f(v_1) = 0, f(v_2) = 2, f(v_3) = 4, f(v_4) = 6, f(v_5) = 8$  and  $f(v_6) = 9.$ 

Clearly f is an odd mean labeling. Here t = 1.

Now,

$$\sum d(v)f(v) + t = 1 \times 0 + 2 \times 2 + 2 \times 4 + 2 \times 6 + 2 \times 8 + 1 \times 9 + 1$$
  
= 4 + 8 + 12 + 16 + 9 + 1  
= 50  
= 2 \times 5<sup>2</sup>  
= 2q<sup>2</sup>.

Hence,  $\sum_{v \in V(G)} d(v)f(v) + t = 2q^2$ .

Hence the theorem.

**Corollary 2.3.3.** If G is an odd mean graph with odd mean labeling f, then  $\sum_{v \in V(G)} d(v)f(v) \ge 2q^2 - q$ .

*Proof.* Follows from the above theorem and using  $t \leq q$ .

**Corollary 2.3.4.** Let G be a 2-regular odd mean graph. Let f be any odd mean labeling of G and  $x \in \{0, 1, 2, 3, \dots, (2q-1)\} - f(V(G))$ . Then  $x \leq \frac{2q^2-q}{2}$ .

*Proof.* Since G is 2-regular, deg(v) = 2 for all  $v \in V(G)$ . By Corollary 2.3.3, we have

$$2q^{2} - q \leq \sum_{v \in V(G)} d(v)f(v)$$
$$= 2\sum_{v \in V(G)} f(v)$$

$$= 2\left(\sum_{v \in V(G)} f(v) + x\right) - 2x$$
  
=  $2(0 + 1 + 2 + 3 + \dots + (2q - 1)) - 2x$   
=  $\frac{2(2q - 1)2q}{2} - 2x$   
=  $4q^2 - 2q - 2x$   
 $2x \le 2q^2 - q$   
 $\Rightarrow x \le \frac{2q^2 - q}{2}.$ 

Hence the proof.

**Theorem 2.3.5.** Any path is an odd mean graph.

*Proof.* Let  $P_n$  be the path  $P_n : u_1, u_2, u_3, \ldots, u_n$ .

Define  $f: V(P_n) \to \{0, 1, 2, \dots, 2n-3\}$  by  $f(u_i) = 2i - 2(1 \le i \le n-1)$  and  $f(u_n) = 2n - 3$ . The label of the edge  $u_{i-1}u_i$  is  $2i - 3(2 \le i \le n)$ .

Obviously  $f(u_1) = 0$  and  $f(u_n) = 2n - 3$ . Thus f is a function from  $V(P_n)$  to the set  $\{0, 1, 2, 3, \ldots, 2n - 3\}$ . Clearly f is one-one.

For  $1 \leq i \leq n-1$ , the vertex labels of  $f(u_i)$  are in the set,  $A = \{0, 2, 4, 6, \dots, 2n-4\} \cup \{2n-3\}$ . The set A has n labels. For  $2 \leq i \leq n$ , the edge labels of  $f(u_{i-1}u_i)$  is the set  $B = \{1, 3, 5, 7, \dots, 2n-3\}$ . The set B has n labels.

Hence 
$$P_n$$
 is an odd mean graph.

**Example 2.3.6.** Odd mean labeling of  $P_{11}$ .

**Theorem 2.3.7.**  $C_n$  is an odd mean graph if  $n \equiv 0 \pmod{4}$ .

*Proof.* Let  $C_n : v_1 v_2 v_3 \dots v_n v_1$  be the given cycle where  $n \equiv 0 \pmod{4}$ .

Define  $f: V(G) \to \{0, 1, 2, 3, \dots, (2n-1)\}$  by

$$f(u_i) = \begin{cases} 4i - 4 & \text{if } 1 \le i \le n/2 \text{ and } i \text{ is odd} \\ 4i - 6 & \text{if } 1 < i \le n/2 \text{ and } i \text{ is even} \\ 4n + 3 - 4i & \text{if } n/2 < i < n \text{ and } i \text{ is odd} \\ 4n + 6 - 4i & \text{if } n/2 < i \le n \text{ and } i \text{ is even.} \end{cases}$$

The label of the edge  $u_i u_{i+1}$  is  $\begin{cases} 4i-3 & \text{if } 1 \le i \le n/2 \\ 4n+3-4i & \text{if } n/2 < i < n \end{cases}$  and the label of the edge  $u_n u_1$  is 3.

$$\min_{u \in V(G)} f(u) = \min_{u \in V(G)} \{f(u_i) : 1 \le i \le n\}$$
  
=  $4i - 4$  if  $1 \le i \le \frac{n}{2}$  and  
 $i$  is odd and  $i = 1$   
=  $0$   
$$\max_{u \in V(G)} f(u) = \max\{f(u_i) : 1 \le i \le n\}$$
  
=  $4n + 3 - 4i$  if  $\frac{n}{2} < i < n, i$  is odd and  
=  $i = \frac{n}{2} + 1$ 

$$= 4n + 3 - 4(\frac{n}{2} + 1)$$
$$= 2n - 1.$$

Thus f is a function from V(G) to the set  $\{0, 1, 2, 3, \dots, (2n-1)\}$ . Clearly f is one-one.

Next we find the vertex labels of  $f(u_i)$ .

For  $1 \le i \le \frac{n}{2}$  and *i* is odd, the labels of  $f(u_i)$  are in the set,  $A_1 = \{0, 8, 16, \dots, 2n - 8\}$ . The set  $A_1$  has  $\frac{n}{4}$  labels.

For  $1 \le i \le \frac{n}{2}$  and *i* is even, the labels of  $f(u_i)$  are in the set,  $A_2 = \{2, 10, 18, \dots, (2n-6)\}$ . The set  $A_2$  has  $\frac{n}{4}$  labels.

For  $\frac{n}{2} < i < n$  and *i* is odd, the labels of  $f(u_i)$  are in the set,  $A_3 = \{2n - 1, 2n - 5, \dots, 7\}$ . The set  $A_3$  has  $\frac{n}{4}$  labels.

For  $\frac{n}{2} < i \leq n$  and *i* is even, the labels of  $f(u_i)$  are in the set,  $A_4 = \{2n + 2, 2n - 2, 2n - 6, \dots, 10\}$ . The set  $A_4$  has  $\frac{n}{4}$  labels. Thus, the vertex labels of  $f(u_i)$  are in the set,  $A = A_1 \cup A_2 \cup A_3 \cup A_4$ .

Therefore, the set A has n labels. Next we find the edge labels.

For  $1 \leq i \leq \frac{n}{2}$ , the labels of  $f(u_i u_{i+1})$  are in the set,  $B_1 = \{1, 5, 9, \dots, 2n-3\}$ . The set  $B_1$  has  $\frac{n}{2}$  labels. For  $\frac{n}{2} < i < n$ , the labels of  $f(u_i u_{i+1})$  are in the set,  $B_2 = \{2n-1, 2n-5, 2n-9, \dots, 7\}$ . The set  $B_2$  has  $\frac{n-2}{2}$  labels.

The label of  $f(u_n u_1)$  is the set  $B_3 = \{3\}$ . Thus the edge

labels of  $f(u_i u_{i+1})$  are in the set  $B = B_1 \cup B_2 \cup B_3$ . Therefore the set B has n labels.

Hence G is an odd mean graph.

**Example 2.3.8.** Odd mean lableing of  $C_{12}$ .



**Definition 2.3.9.**  $C_4 \oplus P_n$  is the graph obtained by joining an end point of the path  $P_n$  to a vertex of the cycle  $C_4$ .

**Theorem 2.3.10.**  $C_4 \oplus P_n$ , is an odd mean graph for all positive integer n.

*Proof.* Let the vertices of  $P_n$  be  $v_1, v_2, v_3, \ldots, v_n$  and the vertices of  $C_4$  be  $v_{n+1}, v_{n+2}, v_{n+3}, v_{n+4}$ .

Define 
$$f: V(G) \to \{0, 1, 2, 3, \dots, (2n+7)\}$$
 by

 $f(v_i) = 2i - 2(1 \le i \le n), f(v_{n+1}) = 2n, f(v_{n+2}) = 2n + 2, f(v_{n+3}) = 2n + 7 \text{ and } f(v_{n+4}) = 2n + 6.$ 

The label of the edge  $v_i v_{i+1}$  is  $2i - 1(1 \le i \le n)$  and  $f(v_{n+1}v_{n+2}) = 2n + 1, f(v_{n+2}v_{n+3}) = 2n + 5, f(v_{n+3}v_{n+4}) = 2n +$  $7, f(v_{n+4}v_{n+1}) = 2n + 3.$ 

Obviously  $f(v_1) = 0$  and  $f(v_{n+3}) = 2n + 7$ . Thus f is a function from V(G) to the set  $\{0, 1, 2, 3, \ldots, 2n + 7\}$ . Clearly f is one-one.

Next we find the vertex labels.

For  $1 \leq i \leq n$ , the labels of  $f(v_i)$  are in the set,  $A_1 = \{0, 2, 4, \ldots, 2n - 2\}$ . The set  $A_1$  has n labels. The other labels of  $f(v_{n+1}), f(v_{n+2}), f(v_{n+3}), f(v_{n+4})$  respectively are in the set,  $A_2 = \{2n, 2n+2, 2n+7, 2n+6\}$ . The set  $A_2$  has 4 labels. Thus the vertex labels of  $f(v_i)$  are in the set  $A = A_1 \cup A_2$ . Thus the set A has n+4 labels.

Next we find the edge labels  $f(v_i v_{i+1})$ .

For  $1 \leq i \leq n$ , the labels of  $f(v_i v_{i+1})$  are in the set,  $B_1 = \{1, 3, 5, \ldots, 2n - 1\}$ . The set  $B_1$  has n labels. The other labels of  $f(v_{n+1}v_{n+2})$ ,  $f(v_{n+2}v_{n+4})$ ,  $f(v_{n+3}v_{n+4})$ ,  $f(v_{n+4}v_1)$  respectively are in the set,  $B_2 = \{2n + 1, 2n + 5, 2n + 7, 2n + 3\}$ . The set  $B_2$  has 4 labels. Thus the edge labels are in the set  $B = B_1 \cup B_2$ . The set B has n + 4 labels.

Hence G is an odd mean graph.  $\Box$ 

**Example 2.3.11.** Odd mean labeling of  $C_4@P_{10}$ .



**Theorem 2.3.12.**  $nC_4$  is an odd mean graph.

*Proof.* Let  $V(nC_4) = \{v_j^i : 1 \le j \le 4 \text{ and } 1 \le i \le n\}.$ 

Define  $f: V(nC_4) \to \{0, 1, 2, 3, \dots, 8n-1\}$  by

$$\begin{split} f(v_1^{(i)}) &= 8i - 8(1 \leq i \leq n), f(v_2^{(i)}) = 8i - 6(1 \leq i \leq n), \\ f(v_3^{(i)}) &= 8i - 1, (1 \leq i \leq n) f(v_4^{(i)}) = 8i - 2(1 \leq i \leq n). \end{split}$$

The label of the edge  $v_1^{(i)}v_2^{(i)}$  is  $8i-7(1 \le i \le n)$ . The label of the edge  $v_1^{(i)}v_4^{(i)}$  is  $8i-5(1 \le i \le n)$ . The label of the edge  $v_2^{(i)}v_3^{(i)}$  is  $8i-3(1 \le i \le n)$ . The label of the edge  $v_3^{(i)}v_4^{(i)}$  is  $8i-1(1 \le i \le n)$ .

Obviously  $f(v_1^{(1)}) = 0$  and  $f(v_3^{(n)}) = 8n - 1$ . Thus f is a function from V(G) to the set  $\{0, 1, 2, 3, \dots, 8n - 1\}$ . Clearly f is one-one.

Next we find the vertex labels  $f(v_i^{(i)})$ .

For  $1 \leq i \leq n$ , the labels of  $f(v_1^{(i)})$  are in the set  $A_1 = \{0, 8, 16, 24, \dots, 8n - 8\}$ . The set  $A_1$  has n labels.

For  $1 \leq i \leq n$ , the labels of  $f(v_2^{(i)})$  are in the set  $A_2 = \{2, 10, 18, \dots, 8n - 6\}$ . The set  $A_2$  has n labels.

For  $1 \leq i \leq n$ , the labels of  $f(v_3^{(i)})$  are in the set  $A_3 = \{7, 15, 23, \ldots, 8n - 1\}$ . The set  $A_3$  has n labels.

For  $1 \leq i \leq n$ , the labels of  $f(v_4^{(i)})$  are in the set  $A_4 = \{6, 14, 22, \dots, 8n-2\}$ . The set  $A_4$  has n labels.

Thus the vertex labels of  $f(v_j^{(i)})$  are in the set  $A = A_1 \cup A_2 \cup A_3 \cup A_4$ . The set A has 4n labels.

Next we find the edge labels.

For  $1 \leq i \leq n$ , the labels of  $f(v_1^{(i)}v_2^{(i)})$  are in the set,  $B_1 = \{1, 9, 17, \dots, 8n - 7\}$ . The set  $B_1$  has n labels.

For  $1 \leq i \leq n$ , the labels of  $f(v_1^{(i)}v_4^{(i)})$  are in the set,  $B_2 = \{3, 11, 19, \dots, 8n-5\}$ . The set  $B_2$  has n labels.

For  $1 \le i \le n$ , the labels of  $f(v_2^{(i)}v_3^{(i)})$  are in the set,  $B_3 = \{5, 13, 21, \dots, 8n - 3\}$ . The set  $B_3$  has *n* labels.

For  $1 \leq i \leq n$ , the labels of  $f(v_3^{(i)}v_4^{(i)})$  are in the set,  $B_4 = \{7, 15, 23, \dots, 8n-1\}$ . The set  $B_4$  has n labels. Thus the edge labels are in the set  $B = B_1 \cup B_2 \cup B_3 \cup B_4$ . The set B has 4n labels.

Hence 
$$nC_4$$
 is an odd mean graph.  $\Box$ 

**Example 2.3.13.** Odd mean labeling of  $6C_4$ .



**Note.** Clearly  $K_1$  and  $K_2$  are odd mean graphs, the labeling being



**Theorem 2.3.14.**  $K_n$  is not an odd mean graph for  $n \geq 3$ .

Proof. Suppose  $K_n (n \ge 3)$  is an odd mean graph. To get the edge label 2q-1, we must have 2q-1 and 2q-2 as the labels of adjacent vertices. Let u and v be the vertices whose labels are 2q-1 and 2q-2 respectively. To get the edge label 1, we must have 0 and 1 as vertex labels (or) 0 and 2 as vertex labels of adjacent vertices. In either case 0 must be a label of some vertex, say w. Now the edges uw and vw get labels q and q-1 which are consecutive integers. This contradiction proves that  $K_n$  is not an odd mean graph for  $n \ge 3$ . **Note.** Clearly  $K_{1,1}$  and  $K_{1,2}$  are odd mean graphs, the labeling being



**Theorem 2.3.15.** If  $n \ge 3$ ,  $K_{1,n}$  is not an odd mean graph.

Proof. Let  $\{V_1, V_2\}$  be the bipartition of  $K_{1,n}$  with  $V_1 = \{u\}$ . To get the edge label 2q - 1, we must have 2q - 1 and 2q - 2 as the labels of adjacent vertices. Thus either 2q - 1 or 2q - 2 must be a label of u. In both cases, since  $n \geq 3$ , there will be no edge with label 1. This contradiction proves that  $K_{1,n}$  is not an odd mean graph.  $\Box$ 

**Theorem 2.3.16.**  $K_{2,n}$  is an odd mean graph for all n.

*Proof.* Let  $\{V_1, V_2\}$  be the bipartition of  $K_{2,n}$  with  $V_1 = \{u, v\}$  and  $V_2 = \{u_1, u_2, u_3, \dots, u_n\}.$ 

Define 
$$f: V(K_{2,n}) \to \{0, 1, 2, \dots, (4n-1)\}$$
 by  
 $f(u) = 0, f(v) = 4n - 1, \text{ and } f(u_i) = 4i - 2, (1 \le i \le n).$ 

The label of the edge  $uu_i$  is  $2i - 1(1 \le i \le n)$  and the label of the edge  $vu_i$  is  $2n + 2i - 1(1 \le i \le n)$ .

Obviously f(u) = 0 and f(v) = 4n-1. Thus f is a function from the set  $V(K_{2,n})$  to the set  $\{0, 1, 2, 3, \ldots, 4n-1\}$ . Clearly f is one-one. Next we find the vertex labels.

For  $1 \leq i \leq n$ , the labels of  $f(u_i)$  are in the set  $A_1 = \{2, 6, 10, 14, \dots, 4n - 2\}$ . The set  $A_1$  has n labels.

The other labels are f(u) = 0 and f(v) = 4n - 1. Thus the vertex labels are in the set  $A = A_1 \cup \{0, 4n - 1\}$ . Therefore the set A has n + 2 labels.

Next we find the edge labels  $f(uu_i), f(vu_i)$ .

For  $1 \leq i \leq n$ , the labels of  $f(uu_i)$  are in the set  $B_1 = \{1, 3, 5, \ldots, (2n-1)\}$ . The set  $B_1$  has n labels. For  $1 \leq i \leq n$ , the labels of  $f(vu_i)$  are in the set,  $B_2 = \{2n+1, 2n+3, 2n+5, \ldots, 4n-1\}$ . The set  $B_2$  has n labels. Thus the edge labels are in the set  $B = B_1 \cup B_2$ . The set B has 2n labels.

Hence 
$$K_{2,n}$$
 is an odd mean graph.  $\Box$ 

**Example 2.3.17.** Odd mean labeling of  $K_{2,10}$ .



**Definition 2.3.18.**  $K_2$  with n pendent edges attached at each point is called a bistar and is denoted by  $B_{n,n}$ .

### **Theorem 2.3.19.** The Bistar $B_{n,n}$ is an odd mean graph for all n.

*Proof.* Let  $V(K_2) = \{u, v\}$  and  $u_i, v_i$  be the vertices adjacent to u and v respectively  $(1 \le i \le n)$ .

Define 
$$f: V(B_{n,n}) \to \{0, 1, 2, \dots, (4n+1)\}$$
 by

 $f(u) = 0, f(v) = 4n + 1, f(u_i) = 4i - 2(1 \le i \le n)$  and  $f(v_i) = 4i(1 \le i \le n).$ 

The label of the edge uv is 2n+1. The label of the edge  $uu_i$  is  $2i-1, (1 \le i \le n)$ . The label of the edge  $vv_i$  is  $(2n+1)+2i, (1 \le i \le n)$ .

Clearly f(u) = 0 and f(v) = 4n + 1. Thus f is a function  $f: V(B_{n,n})$  to the set  $\{0, 1, 2, \ldots, (4n + 1)\}$ . Clearly f is one-one.

Next we find the vertex labels.

For  $1 \leq i \leq n$ , the labels of  $f(u_i)$  are in the set  $A_1 = \{2, 6, 10, \ldots, 4n - 2\}$ . The set  $A_1$  has n labels. For  $1 \leq i \leq n$ , the labels of  $f(v_i)$  are in the set  $A_2 = \{4, 8, 12, 16, \ldots, 4n\}$ . The set  $A_2$  has n labels. The other labels are in the set  $A_3 = \{0, 4n + 1\}$ . The set  $A_3$  has 2 labels. Thus the vertex labels are in the set  $A = A_1 \cup A_2 \cup A_3$ . The set A has 2n + 2 labels.

Next we find the edge labels.

For  $1 \leq i \leq n$ , the labels of  $f(uu_i)$  are in the set,  $B_1 = \{1, 3, 5, \dots, 2n - 1\}$ . The set  $B_1$  has n labels. For  $1 \leq i \leq n$ , the labels of  $f(vv_i)$  are in the set  $B_2 = \{2n+3, 2n+5, 2n+7, \dots, 4n+1\}$ .

The other label is the set,  $B_3 = \{2n + 1\}$ . The set  $B_3$  has 1 label. The edge labels are in the set  $B = B_1 \cup B_2 \cup B_3$ . The set B has 2n + 1 labels.

Hence 
$$B_{n,n}$$
 is an odd mean graph.

**Example 2.3.20.** Odd mean labeling of  $B_{9.9}$ .



**Definition 2.3.21.** The corona  $G_1 \odot G_2$  of two graphs  $G_1$  and  $G_2$  is defined as the graph G obtained by taking one copy of  $G_1$  (which has p points) and p copies of  $G_2$  and then joining the  $i^{th}$  point of  $G_1$  to every point in the  $i^{th}$  copy of  $G_2$ .

**Remark 2.3.22.**  $P_n \odot K_1$  is called *comb*.

**Theorem 2.3.23.** Combs are odd mean graphs.

*Proof.* Let G be the comb obtained from a path  $P_n : v_1, v_2, \ldots, v_n$  by joining a vertex  $u_i$  to  $v_i (1 \le i \le n)$ .

Define 
$$f: V(G) \to \{0, 1, 2, \dots, (4n-3)\}$$
 by  
 $f(v_i) = 4i - 3(1 \le i \le n)$  and  $f(u_i) = 4i - 4(1 \le i \le n).$ 

The label of the edge  $v_i v_{i+1}$  is  $4i - 1(1 \le i \le n - 1)$ . The label of the edge  $u_i v_i$  is  $4i - 3(1 \le i \le n)$ .

$$\min_{v \in V(G)} f(v) = \min_{v \in V(G)} \{f(v_i), f(u_i) : 1 \le i \le n\}$$
  
= min{ $f(u_i) = 4i - 4 : 1 \le i \le n$ }  
= 4i - 4 if  $i = 1$   
= 0.  
$$\max_{v \in V(G)} f(v) = \max_{v \in V(G)} \{f(v_i), f(u_i) : 1 \le i \le n\}$$
  
= max{ $f(v_i) = 4i - 3 : 1 \le i \le n$ }  
= 4i - 3 if  $i = n$   
= 4n - 3.

Thus f is a function from V(G) to the set  $\{0, 1, 2, ..., 4n - 3\}$ . Clearly f is one-one.

Next we find the vertex labels  $f(v_i)$  and  $f(u_i)$ .

For  $1 \leq i \leq n$ , the labels of  $f(v_i)$  are in the set,  $A_1 = \{1, 5, 9, \ldots, 4n - 3\}$ . The set  $A_1$  has n labels. For  $1 \leq i \leq n$ , the labels of  $f(u_i)$  are in the set,  $A_2 = \{0, 4, 8, 12, \ldots, 4n - 4\}$ . The set  $A_2$  has n labels. Thus the vertex labels are in the set,  $A = A_1 \cup A_2$ .

The set A has 2n labels.

Next we find the edge labels  $f(v_i v_{i+1})$  and  $f(u_i v_i)$ .

For  $1 \leq i \leq n-1$ , the labels of  $f(v_i v_{i+1})$  are in the set,  $B_1 = \{3, 7, 11, \ldots, 4n-5\}$ . The set  $B_1$  has n-1 labels. For  $1 \leq i \leq n$ , the labels of  $f(u_i v_i)$  are in the set,  $B_2 = \{1, 5, 9, \ldots, 4n-3\}$ . The set  $B_2$  has n labels. Thus the edge labels are in the set  $B = B_1 \cup B_2$ . The set B has 2n-1 labels.

Hence G is an odd mean graph.

Example 2.3.24. Odd mean labeling of Comb.



**Theorem 2.3.25.**  $P_n \odot K_2$  is an odd mean graph.

*Proof.* Let  $u_i(1 \le i \le n)$  be the vertices of a path  $P_n$  and  $v_i, w_i$  be the vertices which are made adjacent with  $u_i$ . Then G has 3n - 1 edges.

Define 
$$f: V(G) \to \{0, 1, 2, 3, \dots, (6n-3)\}$$
 as follows.  
For  $1 \le i \le n-1$ , let  $f(u_i) = \begin{cases} 6i-6 & \text{if } i \text{ is odd} \\ 6i-2 & \text{if } i \text{ is even} \end{cases}$   
and let  $f(u_n) = 6n-3$ .

24

For  $1 \le i \le n-1$ , let  $f(v_i) = \begin{cases} 6i-4 & \text{if } i \text{ is odd} \\ 6i-8 & \text{if } i \text{ is even} \end{cases}$  and

let  $f(v_n) = 6n - 11$  or 6n - 8 according as n is odd or even.

For 
$$1 \le i \le n-1$$
, let  $f(w_i) = \begin{cases} 6i & \text{if } i \text{ is odd} \\ 6i-4 & \text{if } i \text{ is even} \end{cases}$   
and let  $f(w_n) = 6n-4$ .

The label of the edge  $u_i u_{i+i}$  is  $6i - 1(1 \le i \le n - 1)$ and  $u_{n-1}u_n$  is 6n - 5 if n is odd. The label of the edge  $u_i v_i$  is  $6i - 5(1 \le i \le n)$  and  $u_n v_n$  is 6n - 7 if n is odd. The label of the edge  $u_i w_i$  is  $6i - 3(1 \le i \le n)$ .

$$\min V(G) = \min_{V(G)} \{f(u_i), f(v_i), f(w_i) : 1 \le i \le n\}$$
  
= min {  $f(u_i) = 6i - 6$  if  $i = 1$  }  
= 0.  
$$\max V(G) = \max_{V(G)} \{f(u_i), f(v_i), f(w_i) : 1 \le i \le n\}$$
  
= max {  $f(u_n) = 6n - 3$  }  
=  $6n - 3$ .

Thus f is a function from V(G) to the set  $\{0, 1, 2, 3..., 6n - 3\}$ . Clearly f is one-one.

Next we find the vertex labels.

For  $1 \leq i \leq n-1$  and *i* is odd, the labels of  $f(u_i)$  are in the set,  $A_1 = \{0, 12, 24, \dots, 6n-18 \text{ or } 6n-12 \text{ according as } n \text{ is odd}$ or even}. The set  $A_1$  has  $\frac{n}{2}$  labels. For  $1 \le i \le n-1$  and *i* is even, the labels of  $f(u_i)$  are in the set,  $A_2 = \{10, 22, 34, \dots, 6n-8 \text{ or } 6n-14 \text{ according as } n \text{ is odd}$ or even}. The set  $A_2$  has  $\frac{n-2}{2}$  labels. The label of  $f(u_n)$  is the set  $A_3 = \{6n-3\}$ . The set  $A_3$  has 1 label.

For  $1 \le i \le n-1$  and *i* is odd, the labels of  $f(v_i)$  are in the set  $A_4 = \{2, 14, 26, \dots, 6n-16 \text{ or } 6n-10 \text{ according as } n \text{ is odd}$ or even}. The set  $A_4$  has  $\frac{n}{2}$  labels.

For  $1 \leq i \leq n-1$  and *i* is even, the labels of  $f(v_i)$  are in the set  $A_5 = \{4, 16, 28, \dots, 6n-14 \text{ or } 6n-20\}$ . The set  $A_5$  has  $\frac{n-2}{2}$  labels. The label of  $f(v_n)$  is the set,  $A_6 = \{6n-11 \text{ or } 6n-8 \text{ according as } n \text{ is odd or even}\}$ . The set  $A_6$  has 1 label.

For  $1 \leq i \leq n-1$  and *i* is odd, the labels of  $f(w_i)$  are in the set,  $A_7 = \{6, 18, 30, \ldots, 6n-12 \text{ or } 6n-6\}$ . The set  $A_7$  has  $\frac{n}{2}$  labels.

For  $1 \le i \le n-1$  and *i* is even, the labels of  $f(w_i)$  are in the set,  $A_8 = \{8, 20, 32, \dots, 6n-10 \text{ or } 6n-16 \text{ according as } n$  is odd or *n* is even}. The set  $A_8$  has  $\frac{n-2}{2}$  labels. The label of  $f(w_n)$  is the set  $A_9 = \{6n-4\}$ . The set  $A_9$  has 1 label.

The vertex labels of V(G) are in the set,  $A = A_1 \cup A_2 \cup A_3 \cup \cdots A_9$ . The set A has 3n labels.

Next we find the edge labels.

For  $1 \le i \le n-1$ , the labels of the edges  $f(u_i u_{i+1})$  are in the set,  $B_1 = \{5, 11, 17, \dots, 6n-5 \text{ or } 6n-7 \text{ according as } n \text{ is odd}$  or even}. The set  $B_1$  has n-1 labels.

For  $1 \leq i \leq n$ , the labels of the edges  $f(u_i v_i)$  are in the set,  $B_2 = \{1, 7, 13, \dots, 6n - 7 \text{ or } 6n - 5 \text{ according as } n \text{ is odd or even}\}$ . The set  $B_2$  has n labels.

For  $1 \leq i \leq n$ , the labels of the edges  $f(u_i w_i)$  are in the set  $B_3 = \{3, 9, 15, \dots, 6n - 3\}$ . The set  $B_3$  has n labels. The edge labels are in the set  $B = B_1 \cup B_2 \cup B_3$ . The set has 3n - 1 labels.

Hence  $P_n \odot K_2$  is an odd mean graph.

**Example 2.3.26.** Odd mean labeling of  $P_7 \odot K_2$ .



**Definition 2.3.27.** A quadrilateral snake is obtained from a path  $u_1u_2 \ldots u_n$  by joining  $u_i, u_{i+1}$  to new vertices  $v_i, w_i$  respectively and joining  $v_i$  and  $w_i$ . That is, every edge of the path is replaced by the cycle.

**Theorem 2.3.28.** A quadrilateral snake is an odd mean graph.

*Proof.* Let  $Q_n$  denote the quadrilateral snake obtained from  $u_1u_2...u_n$  by joining  $u_i, u_{i+1}$  to new vertices  $v_i, w_i$  respectively and joining  $v_i$  and  $w_i$ .

Define  $f: V(Q_n) \to \{0, 1, 2, 3, \dots, (8n-9)\}$  as follows:

For 
$$1 \le i \le n$$
,  $f(u_i) = \begin{cases} 8i - 8 & \text{if } i \text{ is odd} \\ 8i - 10 & \text{if } i \text{ is even} \end{cases}$ 

 $f(u_n) = 8n - 9$  if n is odd and n > 1.

For 
$$1 \le i \le n-1$$
,  $f(v_i) = \begin{cases} 8i-6 & \text{if } i \text{ is odd} \\ 8i-4 & \text{if } i \text{ is even} \end{cases}$ 

For 
$$1 \le i \le n-1$$
,  $f(w_i) = \begin{cases} 8i & \text{if } i \text{ is odd} \\ 8i-2 & \text{if } i \text{ is even} \end{cases}$ 

 $f(w_{n-1}) = 8n - 9$  if n is even and  $n \ge 2$ .

The label of the edge  $u_i u_{i+1}$  is 8i-5, if  $1 \le i \le n-1$ . The label of the edge  $v_i w_i$  is 8i-3, if  $1 \le i \le n-1$ . The label of the edge  $u_i v_i$  is 8i-7, if  $1 \le i \le n-1$ . The label of the edge  $u_i, w_{i-1}$  is 8i-9 if  $2 \le i \le n$ .

Obviously  $f(u_1) = 0$  and  $f(u_n)$  or  $f(w_{n-1})$  is 8n - 9 according as n is odd or n is even. Thus f is a function from  $V(Q_n)$  to the set  $\{0, 1, 2, 3, \ldots, (8n - 9)\}$ .

Next we find the vertex labels.

For  $1 \leq i \leq n$ , *i* is odd and *n* is odd, the labels of  $f(u_i)$  are in the set,  $A_1 = \{0, 16, 32, \dots, 8n - 24, 8n - 9\}$ . The set  $A_1$  has  $\frac{n+1}{2}$  labels.

For  $1 \le i \le n$  and *i* is even, the labels of  $f(u_i)$  are in the set,  $A_2 = \{6, 22, 38, \dots, 8n - 18\}$ . The set  $A_2$  has  $\frac{n-1}{2}$  labels. The labels of  $f(u_i)$  are in the set  $A = A_1 \cup A_2$ . The set A has n labels.

For  $1 \leq i \leq n, i$  is odd and n is even, the labels of  $f(u_i)$  are in the set  $B_1 = \{0, 16, 32, \dots, 8n - 16\}$ . The set  $B_1$  has  $\frac{n}{2}$  labels.

For  $1 \leq i \leq n, i$  is even and n is even, the labels of  $f(u_i)$ are in the set  $B_2 = \{6, 22, 38, \dots, 8n - 10\}$ . The set  $B_2$  has  $\frac{n}{2}$  labels. The vertex labels of  $f(u_i)$  are in the set  $B = B_1 \cup B_2$ . The set Bhas n labels.

The labels of  $f(u_i)$  are in the set, either A or B according as n is odd or even.

For  $1 \leq i \leq n-1$  and *i* is odd, the labels of  $f(v_i)$  are in the set  $C_1 = \{2, 18, 34, \dots, 8n-22 \text{ or } 8n-14 \text{ according as } n \text{ is odd}$ or even}. The set  $C_1$  has  $\frac{n-1}{2}$  labels.

For  $1 \le i \le n-1$  and *i* is even, the labels of  $f(v_i)$  are in the set  $C_2 = \{12, 28, 44, \dots, 8n-12 \text{ or } 8n-14 \text{ according as } n \text{ is}$ odd or even}. The set  $C_2$  has  $\frac{n-1}{2}$  labels. The labels of  $f(v_i)$  are in the set  $C = C_1 \cup C_2$ . Thus the set C has (n-1) labels.

For  $1 \leq i \leq n-1$  and *i* is odd, the labels of  $f(w_i)$  are in the set  $D_1 = \{8, 24, 40, \dots, 8n-16, 8n-10 \text{ or } 8n-9 \text{ according as} n \text{ is odd or even}\}$ . The set  $D_1$  has  $\frac{n-1}{2}$  labels.

For  $1 \le i \le n-1$  and *i* is even, the labels of  $f(w_i)$  are in the set  $D_2 = \{14, 30, 46, \dots, 8n-26, 8n-10 \text{ or } 8n-9 \text{ according as} n$  is odd or even}. The set  $D_2$  has  $\frac{n-1}{2}$  labels. The vertex labels of  $f(w_i)$  is the set  $D = D_1 \cup D_2$ . The set D has (n-1) labels.

Thus the vertex labels of  $V(Q_n)$  is the set E = (either A

or B)  $\cup C \cup D$ . Therefore the set E has 3n - 2 labels.

Next we find the edge labels.

For  $1 \le i \le n - 1$ , the labels of  $f(u_i u_{i+1})$  is in the set  $F_1 = \{3, 11, 19, \dots, 8n - 13\}$ . The set  $F_1$  has n - 1 labels.

For  $1 \le i \le n - 1$ , the labels of  $f(v_i w_i)$  is the set  $F_2 = \{5, 13, 21, \dots, 8n - 11\}$ . The set  $F_2$  has n - 1 labels.

For  $1 \leq i \leq n-1$ , the labels of  $f(u_i v_i)$  is the set  $F_3 = \{1, 9, 17, \dots, 8n-15\}$ . The set  $F_3$  has n-1 labels.

For  $2 \leq i \leq n$ , the labels of  $f(u_i w_{i-1})$  is the set  $F_4 = \{7, 15, 23, \ldots, 8n - 9\}$ . The set  $F_4$  has n - 1 labels. Thus the edge labels  $E(Q_n)$  is the set  $F = F_1 \cup F_2 \cup F_3 \cup F_4$ . The set F has 4n - 4 labels.

Hence  $Q_n$  is an odd mean graph.

**Example 2.3.29.** Odd mean labeling of  $Q_8$ .



**Theorem 2.3.30.** The graph G consisting of vertices  $u_i, v_i (0 \le i \le n)$  with edges  $u_i u_{i+1}, v_i v_{i+1}$  for i = 0, 1, 2, 3, ..., (n-1) and  $u_i v_i$  for i = 1, 2, 3, ..., (n-1) is an odd mean graph.

*Proof.* Let G be the given graph with

$$V(G) = \{u_i, v_i/i = 0, 1, 2, \dots, n\} \text{ and}$$
$$E(G) = \{u_i u_{i+1}, v_i v_{i+1}/i = 0, 1, 2, \dots, (n-1)\}$$
$$\cup \{u_i v_i/i = 1, 2, 3, \dots, (n-1)\}.$$

Define  $f: V(G) \to \{0, 1, 2, 3, \dots, (6n-3)\}$  by

 $f(u_i) = 2i, 0 \le i \le n, f(v_i) = 4n - 2 + 2i, 0 \le i \le n - 1$ and  $f(v_n) = 6n - 3$ .

The label of the edge  $u_i u_{i+1}$  is  $2i + 1, 0 \le i \le n - 1$ . The label of the edge  $v_i v_{i+1}$  is  $4n + 2i - 1, 0 \le i \le n - 1$ . The label of the edge  $u_i v_i$  is  $2n + 2i - 1, 1 \le i \le n - 1$ .

Obviously  $f(u_0) = 0$  and  $f(v_n) = 6n - 3$ . Thus f is a function from V(G) to the set  $\{0, 1, 2, 3, \ldots, (6n - 3)\}$ . Clearly f is one-one.

Next we find the vertex labels.

For  $0 \le i \le n$ , the labels of  $f(u_i)$  are in the set  $A_1 = \{0, 2, 4, \ldots, 2n\}$ . The set  $A_1$  has n + 1 labels.

For  $0 \le i \le n-1$ , the labels of  $f(v_i)$  are in the set  $A_2 = \{4n-2, 4n, 4n+2, \ldots, 6n-4\}$ . The set  $A_2$  has n labels. The other label  $f(v_n)$  is 6n-3. Thus, the vertex labels are in the set  $A = A_1 \cup A_2 \cup \{6n-3\}$ . The set A has 2n+2 labels.

Next we find the edge labels of  $f(u_i u_{i+1})$ ,  $f(v_i v_{i+1})$  and  $f(u_i v_i)$ .

For  $0 \le i \le n-1$ , the labels of  $f(u_i u_{i+1})$  are in the set  $B_1 = \{1, 3, 5, \dots, 2n-1\}$ . The set  $B_1$  has n labels.

For  $0 \le i \le n - 1$ , the labels of  $f(v_i v_{i+1})$  are in the set  $B_2 = \{4n - 1, 4n + 1, 4n + 3, \dots, 6n - 3\}$ . The set  $B_2$  has n labels.

For  $1 \leq i \leq n-1$ , the labels of  $f(u_iv_i)$  are in the set  $B_3 = \{2n+1, 2n+3, 2n+5, \ldots, 4n-3\}$ . The set  $B_3$  has (n-1) labels. Thus the edge labels are in the set,  $B = B_1 \cup B_2 \cup B_3$ . Therefore the set B has 3n-1 labels.

Hence G is an odd mean graph.

**Example 2.3.31.** Odd mean labeling of G.



**Definition 2.3.32.** For two graphs  $G_1 = (V_1, E_1)$  and  $G_2 = (V_2, E_2)$ ,  $G_1 \times G_2$  is defined as the graph with vertex set as  $V_1 \times V_2$  such that two points  $u = (u_1, v_1)$  and  $v = (u_2, v_2)$  in  $V_1 \times V_2$  are adjacent in  $G_1 \times G_2$  whenever  $u_1 = v_1$  and  $u_2$  is adjacent to  $v_2$  in  $G_2$  or  $u_2 = v_2$ and  $u_1$  is adjacent to  $v_1$  in  $G_1$ .

**Definition 2.3.33.** The graph  $P_m \times P_n$  is called a *planar grid*.

**Theorem 2.3.34.** The planar grid  $P_m \times P_n$  is an odd mean graph for  $m \ge 2$  and  $n \ge 2$ . *Proof.* Let  $V(P_m \times P_n) = \{a_{ij} : 1 \le i \le m, 1 \le j \le n\}$  and  $E(P_m \times P_n) = \{a_{i,j-1}a_{ij} : 1 \le i \le m, 2 \le j \le n\} \cup \{a_{i-1j}a_{ij} : 2 \le i \le m, 1 \le j \le n\}.$ 

Define  $f: V(P_m \times P_n) \to \{0, 1, 2, \dots, (4mn - 2m - 2n - 1)\}$  by

 $f(a_{ij}) = 2(j-1), 1 \le j \le n \text{ and } f(a_{ij}) = f(a_{i-1,n}) + 2(n-1) + 2j \text{ where } 2 \le i \le m, 1 \le j \le n, \ f(a_{mn}) = 4mn - 2m - 2n - 1.$ The label of the edge  $a_{ij}a_{ij+1}$  is (i-1)(4n-3) + i + 2j - 2 where  $1 \le i \le m, 1 \le j \le n - 1$ . The label of the edge  $a_{ij}a_{i+1j}$  is  $(2i - 2)(2n - 1) + 2n - 3 + 2j, 1 \le i \le m - 1, 1 \le j \le n$ .

Obviously  $f(a_{11}) = 0$  and  $f(a_{mn}) = 4mn - 2m - 2n - 1$ . Thus f is a function from  $V(P_m \times P_n)$  to the set  $\{0, 1, 2, 3, \dots, 4mn - 2m - 2n - 1\}$ . Next we find the vertex labels  $f(a_{ij})$ . For  $1 \le i \le m, 1 \le j \le n$ , the vertex labels of  $f(a_{ij})$  are arranged as follows. This arrangement has mn labels.

|      | j  |         |         |          |               |               |                                          |
|------|----|---------|---------|----------|---------------|---------------|------------------------------------------|
|      | i  | 1       | 2       | 3        | 4             |               | n                                        |
| ·    | 1  | 0       | 2       | 4        | 6             |               | 2n - 2                                   |
|      | 2  | 4n - 2  | 4n      | 4n + 2   | 4n + 4        |               | 6n - 4                                   |
|      | 3  | 8n - 4  | 8n - 2  | 8n       | 8n + 2        |               | 10n - 6                                  |
|      | 4  | 12n - 6 | 12n - 4 | 12n - 2  | 12n           |               | 14n - 8                                  |
|      |    | :       |         |          |               |               |                                          |
|      |    | :       |         |          |               |               |                                          |
| m 4r | nn | -2m-4m  | n+2 4mn | -2m - 4m | $n+4,\ldots,$ | $\ldots, 4mn$ | n - 2m - 2n - 2n - 2n - 2n - 2m - 2m - 2 |

We have mn labels.

For  $1 \leq i \leq m, 1 \leq j \leq n-1$ , the labels of the edges  $(a_{ij}a_{ij+1})$  are arranged as follows. This arrangement has m(n-1) labels.

|       | 1        | 3       | 5       | 7            |               | 2n - 3                                    |    |
|-------|----------|---------|---------|--------------|---------------|-------------------------------------------|----|
|       | 4n - 1   | 4n + 1  | 4n + 3  | 4n + 5       |               | 6n - 5                                    |    |
|       | 8n - 3   | 8n - 1  | 8n + 1  | 8n + 3       |               | 10n - 7                                   |    |
|       | 12n - 5  | 12n - 3 | 12n - 1 | 12n + 1      |               | 14n - 9                                   |    |
|       | •        |         |         |              |               |                                           |    |
|       | :        |         |         |              |               |                                           |    |
| 4mn · | -2m - 4m | n+3 4mn | -2m-4   | $n+5,\ldots$ | $\ldots, 4mn$ | a - 2m - 2n - 2n - 2n - 2n - 2m - 2m - 2m | +1 |

For  $1 \leq i \leq m-1, 1 \leq j \leq n$ , the labels of edges  $f(a_{ij}a_{i+1j})$ are arranged as follows. This arrangement has (m-1)n labels.

|       | 2n - 1   | 2n + 1  | 2n + 3  | 2n + 5       |               | 4n - 3      |   |
|-------|----------|---------|---------|--------------|---------------|-------------|---|
|       | 6n - 3   | 6n - 1  | 6n + 1  | 6n + 3       |               | 8n - 5      |   |
|       | 10 - 5   | 10n - 3 | 10n - 1 | 10n + 1      |               | 12n - 7     |   |
|       | 14n - 7  | 14n - 5 | 14n - 3 | 14n - 1      |               | 16n - 9     |   |
|       | :        |         |         |              |               |             |   |
|       | :        |         |         |              |               |             |   |
| 4mn - | -2m - 6r | n+3 4mn | -2m-6   | $n+5,\ldots$ | $\ldots, 4mn$ | 2 - 2m - 4n | + |

Thus we have m(n-1) + (m-1)n = 2mn - m - n edge labels. Hence  $P_m \times P_n$  is an odd mean graph for  $m \ge 2$  and  $n \ge 2$ .

1

|     | 0 1 | 2 3 4   | 5       | 5 7     | 8 9     | <sup>10</sup> 11 1 | 2 13 1  | 4 15 1  | 6          |
|-----|-----|---------|---------|---------|---------|--------------------|---------|---------|------------|
|     | 17  | 19      | 21      | 23      | 25      | 27                 | 29      | 31      | 33         |
| 34  | 35  | 36 37   | 38 39   | 40 41   | 42 43   | 44 45              | 46 47   | 48 49   | 50         |
| 34  | 51  | 53      | 55      | 57      | 59      | 61                 | 63      | 65      | 67         |
| 68  | 69  | 70 71   | 72 73   | 74 75   | 76 77   | 78 79              | 80 81   | 82 83   | <b>8</b> 4 |
|     | 85  | 87      | 89      | 91      | 93      | 95                 | 97      | 99      | 101        |
| 102 | 103 | 104 105 | 106 107 | 108 109 | 110 111 | 112 113            | 114 115 | 116 117 | 118        |
|     | 119 | 121     | 123     | 125     | 127     | 129                | 131     | 133     | 135        |
| 136 | 137 | 138 139 | 140 141 | 142 143 | 144 145 | 146 147            | 148 149 | 150 151 | •152       |
|     | 153 | 155     | 157     | 159     | 161     | 163                | 165     | 167     | 169        |
| 170 | 171 | 172 173 | 174 175 | 176 177 | 178 179 | 180 181            | 182 183 | 184 185 | • 185      |

**Example 2.3.35.** Odd mean labeling of  $P_6 \times P_9$ .

**Remark 2.3.36.**  $P_n \times P_2$  is called a *ladder* and is denoted by  $L_n$ .

**Corollary 2.3.37.**  $L_n$  is odd mean graph for all n.

**Theorem 2.3.38.** The graph obtained by appending an edge to each vertex of a ladder is an odd mean graph.

*Proof.* Let  $P_n \times K_2$  be the ladder. Let G be the graph obtained by appending an edge to each vertex of the ladder. Let  $u_i$  and  $v_i$  be the vertices of the ladder. For  $1 \leq i \leq n$ , let  $u'_i$  and  $v'_i$  be the new vertices made adjacent with  $u_i$  and  $v_i$  respectively.

Define  $f: V(G) \to \{0, 1, 2, 3, \dots, (10n - 5)\}$  by

 $f(u_i) = 10i - 8(1 \le i \le n), f(v_i) = 10i - 6(1 \le i \le n - 1), f(u'_i) = 10i - 10(1 \le i \le n), f(v'_i) = 10i - 4, (1 \le i \le n) \text{ and } f(v_n) = 10n - 5.$ 

The label of the edge  $u_i u_{i+1}$  is  $10i - 3(1 \le i \le n - 1)$ . The label of the edge  $v_i v_{i+1}$  is  $10i - 1(1 \le i \le n - 1)$ . The label of the edge  $u_i u'_i$  is  $10i - 9(1 \le i \le n)$ . The label of the edge  $v_i, v'_i$  is  $10i - 5(1 \le i \le n)$ . The label of the edge  $u_i v_i$  is  $10i - 7(1 \le i \le n)$ .

$$\min V(G) = \min\{f(u_i), f(v_i), f(u'_i), f(v'_i) : 1 \le i \le n\}$$
$$= \min\{f(u'_i) = 10i - 10 : 1 \le i \le n\}$$
$$= 10i - 10 \text{ if } i = 1$$
$$= 0.$$

Obviously  $f(v_n) = 10n - 5$ . Thus f is a function from V(G) to the set  $\{0, 1, 2, 3, \dots, 10n - 5\}$ . Clearly f is one-one.

Next we find the vertex labels.

For  $1 \leq i \leq n$ , the labels of  $f(u_i)$  are in the set  $A_1 = \{2, 12, 22, \ldots, 10n - 8\}$ . The set  $A_1$  has n labels.

For  $1 \le i \le n - 1$ , the labels of  $f(v_i)$  are in the set  $A_2 = \{4, 14, 24, \dots, 10n - 16\}$ . The set  $A_2$  has n - 1 labels.

For  $1 \le i \le n$ , the labels of  $f(u'_i)$  is the set  $A_3 = \{0, 10, 20, \dots, 10n - 10\}$ . The set  $A_3$  has n labels.

For  $1 \le i \le n$ , the labels of  $f(v'_i)$  is the set  $A_4 = \{6, 16, 26, \dots, 10n-4\}$ . The set  $A_4$  has n labels. The labels of  $f(v_n)$  is the set,

 $A_5\{10n-5\}$ . The set  $A_5$  has 1 label. The vertex label of f(V(G)) is the set  $A = A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5$ . The set A has 4n labels.

Next we find the edge labels.

For  $1 \le i \le n-1$ , the labels of the edges  $f(u_i u_{i+1})$  is the set  $B_1 = \{7, 17, 27, \dots, 10n-13\}$ . The set  $B_1$  has (n-1) labels.

For  $1 \le i \le n-1$ , the labels of the edges  $f(v_i v_{i+1})$  is the set  $B_2 = \{9, 19, 29, \dots, 10n - 11\}$ . The set  $B_2$  has (n-1) labels.

For  $1 \leq i \leq n$ , the labels of the edge  $f(u_i u'_i)$  is the set  $B_3 = \{1, 11, 21, \dots, 10n - 9\}$ . The set  $B_3$  has n labels.

For  $1 \leq i \leq n$ , the labels of the edge  $f(v_i v'_i)$  is the set  $B_4 = \{5, 15, 25, \dots, 10n - 5\}$ . The set  $B_4$  has n labels.

For  $1 \leq i \leq n$ , the labels of the edge  $f(u_i v_i)$  is the set  $B_5 = \{3, 13, 23, \dots, 10n - 7\}$ . The set  $B_5$  has n labels.

Thus the edge labels are in the set,  $B = B_1 \cup B_2 \cup B_3 \cup B_4 \cup B_5$ . Therefore the set B has 5n - 2 labels.

Hence 
$$G$$
 is an odd mean graph.  $\Box$ 

**Example 2.3.39.** Odd mean labeling of G.



**Definition 2.3.40.** The subdivision graph S(G) of a graph G is obtained by replacing each edge of G by a path of length 2.

**Theorem 2.3.41.**  $S(L_n)$  is an odd mean graph.

Proof. Let  $v_i, u_i$  be the vertices of a ladder  $(1 \le i \le n)$ . Let  $v'_i$  be th newly added vertex between  $v_i$  and  $v_{i+1}(1 \le i \le n-1)$ . Let  $u'_i$ be the newly added vertex between  $u_i$  and  $u_{i+1}(1 \le i \le n-1)$ . Let  $w_i$  be the newly added vertex between  $v_i$  and  $u_i$ . Clearly the graph G has 5n - 2 vertices and 6n - 4 edges. Define  $f: V(G) \to \{0, 1, 2, 3, \dots, (12n-9)\}$  by

 $f(u_i) = 4i - 4(1 \le i \le n), f(v_1) = 12n - 9, f(v_i) = 12n - 4 - 4i(2 \le i \le n), f(u'_i) = 4i - 2, 1 \le i \le n - 1, f(v'_i) = 12n - 6 - 8i, 1 \le i \le n - 1 \text{ and } f(w_i) = 12n - 2 - 8i, 1 \le i \le n.$ 

The label of the edge  $u_i u'_i$  is  $4i - 3(1 \le i \le n - 1)$ . The label of the edge  $u'_i u_{i+1}$  is  $4i - 1(1 \le i \le n - 1)$ . The label of the edge  $u_i w_i$  is  $6n - 2i - 3(1 \le i \le n)$ . The label of the edge  $v_i w_i$  is  $12n - 6i - 3(1 \le i \le n)$ . The label of the edge  $v_i v'_i$  is 12n - 6i - 5 $(1 \le i \le n - 1)$ . The label of the edge  $v'_i v_{i+1}$  is  $12n - 6i - 7(1 \le i \le n - 1)$ .

Obviously  $f(u_1) = 0$  and  $f(v_1) = 12n - 9$ . Thus f is a function from V(G) to the set  $\{0, 1, 2, 3, \ldots, (12n - 9)\}$ . Clearly f is one-one.

Next we find the vertex labels f(V(G)).

For  $1 \le i \le n$ , the labels of  $f(u_i)$  is the set  $A_1 = \{0, 4, 8, \dots, 4n - 4\}$ . The set  $A_1$  has n labels. The label of  $f(v_1)$  is the set  $A_2 = \{12n - 9\}$ . The set  $A_2$  has 1 label.

For  $2 \le i \le n$ , the labels of  $f(v_i)$  is the set  $A_3 = \{12n - 12, 12n - 16, 12n - 20, \dots, 8n - 4\}$ . The set  $A_4$  has (n - 1) labels.

For  $1 \leq i \leq n-1$ , the labels of  $f(u'_i)$  is the set  $A_4 = \{2, 6, 10, \ldots, 4n-6\}$ . The set  $A_4$  has (n-1) labels.

For  $1 \le i \le n - 1$ , the labels of  $f(v_i)$  is the set  $A_5 = \{12n - 14, 12n - 22, \dots, 4n + 2\}$ . The set  $A_5$  has n - 1 labels.

For  $1 \le i \le n$ , the labels of  $f(w'_i)$  is the set  $A_6 = \{12n - 10, 12n - 18, 12n - 26, \dots, 4n - 2\}$ . The set  $A_6$  has n labels.

Thus the vertex labels of f(V(G)) is the set  $A = A_1 \cup A_2 \cup A_3 \cup A_4 \cup A_5 \cup A_6$ . Therefore the set A has 5n - 2 labels.

Next we find the edge labels.

For  $1 \le i \le n-1$ , the labels of the edge  $f(u_i u'_i)$  is the set  $B_1 = \{1, 5, 9, \dots, 4n-7\}$ . The set  $B_1$  has (n-1) labels.

For  $1 \le i \le n-1$ , the labels of the edge  $f(u'_i u_{i+1})$  is the set  $B_2 = \{3, 7, 11, \dots, 4n-5\}$ . The set  $B_2$  has (n-1) labels.

For  $1 \leq i \leq n$ , the labels of the edge  $f(u_i w_i)$  is the set  $B_3 = \{6n - 5, 6n - 7, 6n - 9, \dots, 4n - 3\}$ . The set  $B_3$  has n labels.

For  $1 \le i \le n$ , the labels of the edge  $f(v_i w_i)$  is the set  $B_4 = \{12n - 9, 12n - 15, 12n - 21, ..., 6n - 3\}$ . The set  $B_4$  has n labels.

For  $1 \le i \le n-1$ , the labels of the edge  $f(v_i v'_i)$  is the set  $B_5 = \{12n-11, 12n-17, \dots, 6n+1\}$ . The set  $B_5$  has (n-1) labels.

For  $1 \le i \le n-1$ , the labels of the edges  $v'_i v_{i+1}$  is the set  $B_6 = \{12n-13, 12n-19, \ldots, 6n-1\}$ . The set  $B_6$  has (n-1) labels.

Thus the edge labels are in the set  $B = B_1 \cup B_2 \cup B_3 \cup$ 

 $B_4 \cup B_5 \cup B_6$ . Therefore, the set B has 6n - 4 labels.

Hence 
$$S(L_n)$$
 is an odd mean graph.

**Example 2.3.42.** Odd mean labeling of subdivision graph  $G = S(L_n)$ .



41

## 2.4 CONCLUSION AND SCOPE

Further we have planned to work k-odd mean labeling and (k, d)-odd mean labeling of any graph.