NOTATIONS AND ABBREVIATIONS

A Cross sectional area
AR Aspect ratio
a Size of element in x-direction
[A] Co-ordinate matrix
Bccs Boundary compatibility conditions
b Size of element in y-direction
b_{12}, b_{23}, b_{13} Coefficients corresponding to equilibrium matrix
[B] Equilibrium matrix
[B_e] Basic element equilibrium matrix
[B_f] Matrix based coordinates of forward end
CCmatrix Product of [C] and [G] matrices in Matlab
CCs Compatibility conditions
c_{12}, c_{23}, c_{13} Coefficients corresponding to equilibrium matrix
[C] Compatibility matrix
DDRs Displacement deformation relations
DR Displacement ratio
ddof Displacement degrees of freedom
[D] Material matrix
[D]_{DIFM} Dual matrix
[D_{ps}] Material matrix for plane strain material
E Modulus of elasticity
EEs Equilibrium equations
E_x, E_y Modulus of elasticity along x-and-y directions
FDRs Force deformation relations
f dof Force degrees of freedom
{F} Internal force vector
GJ Torsional rigidity of member
G_{matrix} [G] matrix in Matlab
\(G_{xy} \) Shear Modulus in xy plane

\([G]\) Associated flexibility matrix

\([G_e]\) Elemental flexibility matrix

\([G_{ps}]\) Elemental flexibility matrix for plane strain

I Moment of inertia

\([J]\) Coefficient matrix equals to \([S^{-1}]^T\)

\([K_g]\) Geometric stiffness matrix

\([K_{ge}]\) Geometric element stiffness matrix

L Length of member

\(L_1, L_2, L_3\) Shape function in area coordinate system

\([L]\) Operator matrix

\(M_{DNL}\) Matrix Product of \([M]\), \([J]\) and \([G]\) matrices

\(M_{DNLM}\) Direct Nodal Lumping Mass

\(M_{xx}, M_{yy}\) Moments along x- and y- directions

\(M_{xy}\) Torsional moment in x-y plane

\(m\) Number of displacement degrees of freedom

\(m_o\) Lumped mass

\([M_c]\) Consistent mass matrix

\([M_L]\) Lumped Mass Matrix or Mmatrix in Matlab

\(N_x, N_y\) In-plane forces along x- and y- directions

n Number of force degrees of freedom

\([N]\) Shape function matrix

\(P_{cr}\) Critical buckling load

\(\{P\}\) \{P\} vector in Matlab

\(\{P\}\) Load vector

\(q_o(\tau, \theta)\) Transverse loading on circular plate

\(r\) Radius in polar coordinate system

\(r, \bar{x}, \bar{y}\) Coefficients corresponding to respective directions

\(S_{inv}\) \([S]^{-1}\)

\([S]\) Global equilibrium matrix

\([S_b]\) Stability matrix

\([S_{matrix}]\) \([S]\) matrix in Matlab
\(T \) Torque in the member
\(t \) Thickness of element
\(U \) Internal strain energy
\(u, v \) Nodal displacements along x- and y- directions
\([Y] \) Stress interpolation function matrix
\(z.cMatrix \) [C] matrix
\(z.cTransposeB \) Product of [C] and [B]\(^T\)
\([Z] \) Strain linking matrix
\(\alpha \) Coefficient corresponding to angle \(\alpha \)
\(\{\beta\} \) Deformation vector
\(\delta_L \) Extension in the member
\(\{\delta\} \) Displacement Vector
\(\varepsilon \) Strain
\(\theta_x, \theta_y \) Rotations along x– and y directions
\([\lambda] \) Transformation matrix
\(\phi_{xy} \) Polynomial function
\(\sigma_r \) Radial stress in curved member
\(\sigma_x, \sigma_y \) Stresses in x– and y directions
\(\sigma_\theta \) Tangential stress in curved member
\(\tau_{xy} \) Shear stress in xy plane
\(\gamma \) Poisson’s ratio
\(\omega_{11} \) Frequency of first mode
\(\omega_{IFM} \) IFM based frequency
\(\omega_{exact} \) Exact Value of frequency