CONTENTS

CHAPTER 1 INTRODUCTION 1

CHAPTER 2 THEORETICAL MODELS 4

2.1 The Quantum Mechanical Fragmentation Theory 4

2.2 Existing Models 7

2.2.1 The Fission Models 7

2.2.1.1 Analytical Super Asymmetric Fission Model (ASAFM) 7

2.2.1.2 Proximity Potential Model of Shi and Swiatecki 9

2.2.1.3 Cubic Plus Yukawa Plus Exponential Potential Model (CYEM) 11

2.2.2 The Cluster Models 13

2.2.2.1 Microscopic Model of Blendowski et al 13

2.2.2.2 Preformed Cluster Model (PCM) 14

2.2.2.3 Cluster Model of Buck et al 17

2.2.2.4 Double Folded Michigan-Three-Yukawa Potential Model 19

2.3 The Present Model 21

2.3.1 Details of The Model 22

CHAPTER 3 EXPERIMENTAL STUDIES ON EXOTIC DECAY – 26

A SHORT REVIEW

3.1 Experimental Techniques 26

3.2 Experimentally Observed Decay Modes 28
CHAPTER 4 STUDIES ON EXOTIC DECAY
4.1 Verification of the Present Model with Experimental Data
4.2 Application of the Present Model to Parents in Trans-Tin Region
4.2.1 Decay Leading to 100Sn
4.2.1.1 Xenon Isotopes
4.2.1.2 Barium Isotopes
4.2.1.3 Cerium Isotopes
4.2.1.4 Neodymium Isotopes
4.2.1.5 Samarium Isotopes
4.2.1.6 Gadolinium Isotopes
4.2.1.7 Conclusion
4.2.2 Decay Leading to 132Sn

CHAPTER 5 EFFECT OF DEFORMATION
5.1 Details of The Model
5.2 Effect of Deformation on Half Life Time
5.3 Results and Discussion

CHAPTER 6 FINE STRUCTURE
6.1 Hindrance Factor
6.2 14C Fine Structure in 223Ra Isotopes
6.3 Fine Structure in the Exotic Decay of Other Isotopes
6.4 Results and Discussion
CHAPTER 7 TRANSITION FROM CLUSTER MODE TO FISSION MODE
7.1 The Theory 133
7.2 Decay of Heavy Nuclei 133
7.3 Results and Discussion 142
CHAPTER 8 DECAY FROM EXCITED STATES OF PARENTS 147
8.1 Decay from The Ground State 147
8.2 Decay of Excited Compound System 148
CHAPTER 9 COLD SYNTHESIS OF HEAVY AND SUPER HEAVY ELEMENTS 159
CHAPTER 10 SUMMARY AND CONCLUSIONS 174
LIST OF PUBLICATIONS 178
REFERENCES 180