LIST OF FIGURES

CHAPTER 1

Figure 1.1 Schematic of major functional domains of androgen receptor (AR) Pg 2
Figure 1.2 The different modes of androgen receptor mediated androgen action on gene expression Pg 3
Figure 1.3 Chemical structures of androgens (testosterone and dihydrotestosterone) and anti-androgens Pg 4
Figure 1.4 Schematic diagram of the two estrogen receptors, ERα and ERβ Pg 4
Figure 1.5 Chemical structures of estradiol-17β (estrogen) and tamoxifen & raloxifene (anti-estrogens; selective estrogen receptor modulators; SERMs) Pg 5
Figure 1.6 Chemical structures of PPT (ER-α-specific agonist) and DPN (ER-β-specific agonist) Pg 6
Figure 1.7 Model representing the various modes through which estrogen receptors can modulate transcription of genes Pg 7
Figure 1.8 Structure of the lipocalin fold Pg 16

CHAPTER 2 No figures

CHAPTER 3

Figure 3.1 Expression pattern of (major) 20-kDa LG/tear protein and 24/20.5 kDa MSP of SMG and their immunological similarity Pg 39
Figure 3.2 Flow chart showing sequence of major steps involved in purification of FLP and its immunorelated 20.5- and 24 kDa proteins from hamster LG Pg 39
Figure 3.3 Ion exchange chromatography of LG proteins to separate FLP and 24 and 20.5 kDa immunorelated LG proteins Pg 40
Figure 3.4 Gel-filtration chromatography of pool-A1 to obtain pure 24 and 20.5 kDa LG proteins Pg 41
Figure 3.5 Purification of FLP and LG 20.5 and 24 kDa (MSPs) from LG Pg 41
Figure 3.6 Plot of log molecular weight versus KAV of gel filtration standard proteins showing estimated M, of native purified FLP and LG 20.5 and 24 kDa proteins Pg 42
Figure 3.7 N-glycosidase F treatment of purified 24- and 20.5 kDa LG proteins Pg 42
Figure 3.8 Phast gel isoelectric focusing of purified FLP and 24 kDa LG protein to determine their pl and comparison with the crude extracts of LG and SMG of
male and female Pg 43

Figure 3.9 Two dimensional gel electrophoresis and Western blot analysis of LG and SMG extract of gonadectomized female probed with MSP antiserum Pg 44

Figure 3.10 Comparision of MALDI-TOF mass spectra of purified FLP, LG 20.5 kDa and LG 24 kDa proteins Pg 45

Figure 3.11 Full-length cDNA and amino acid sequences of FLP and MSP Pg 48

Figure 3.12 Alignment of deduced amino acid sequences of hamster FLP & MSP with closely related lipocalins, rat OBP1f, mouse OBP and hamster aphrodisin Pg 50

Figure 3.13 Bacterial expression and purification of recombinant FLP and MSP and comparison with extracts of gonadectomized female LG and SMG Pg 51

Figure 3.14 Comparison of MALDI-TOF mass spectra of purified recombinant FLP and MSP Pg 52

CHAPTER 4

Figure 4.1 Northern blots of exorbital (ELG) and infraorbital (ILG) lacrimal glands and submandibular gland (SMG) of adult hamsters Pg 56

Figure 4.2 Western blots showing sex-specific expression of FLP and MSP in exorbital (ELG) and infraorbital (ILG) lacrimal glands and submandibular gland (SMG) of adult hamster and their expression in ELG in different hormonal states Pg 57

Figure 4.3 Localization of FLP/MSP immunoreactivity in LG: comparison between gonadectomized female (high expression) and male (no expression) Pg 59

Figure 4.4 Ontogeny of FLP and MSP expression in LG of male & female hamsters Pg 60

Figure 4.5 Sex-hormonal regulation of FLP and MSP expression in LG of immature 20-day old male and female weanling hamsters Pg 61

Figure 4.6 Effect of continuous daily androgen treatment on FLP and MSP expression in LG of growing male and female hamsters Pg 63

Figure 4.7 Effect of continuous estrogen treatment on FLP and MSP expression in LG of developing male and female hamsters Pg 64

Figure 4.8 Androgenic repression of MSP and estrogenic repression of FLP in immature weanling hamster LG is mediated by respective sex-hormone receptors Pg 66

Figure 4.9 Estrogenic repression of FLP and MSP in adult LG is mediated by estrogen receptor-α. Pg 67

Figure 4.10 Androgenic repression of FLP and MSP in adult LG is mediated by androgen receptor Pg 68
Figure 4.11 Changes in levels of endogenous androgens, prolactin, LH and FSH in developing male hamsters Pg 70

CHAPTER 5

Figure 5.1 Sex-hormonal regulation of MSP in submandibular gland (SMG) of adult Syrian hamster Pg 76
Figure 5.2 Localization of MSP immunoreactivity in SMG: comparison between male (high expression), female (no expression) and gonadectomized female (high expression) Pg 77
Figure 5.3 Ontogeny of MSP expression in SMG of male and female hamsters Pg 78
Figure 5.4 Sex hormonal regulation of MSP in SMG of immature (20-day old) male and female weanling hamsters Pg 79
Figure 5.5 Treatment of hamsters with androgen during development and long-term androgen treatment to adult gonadectomized females results in androgen-insensitive expression of MSP in SMG Pg 81
Figure 5.6 Effect of castration of male hamsters at different ages on androgenic repression of MSP in adulthood Pg 83
Figure 5.7 Androgenic repression of MSP in adult hamster SMG is mediated by androgen receptor Pg 84
Figure 5.8 Estrogenic repression of MSP in adult SMG is blocked by estrogen receptor antagonists and is likely to be mediated by estrogen receptor-α Pg 85
Figure 5.9 Androgenic and estrogenic repression of MSP in immature weanling hamster SMG is also mediated by the respective sex-hormone receptors Pg 86
Figure 5.10 Comparison of primary cultured SMG cells of male and female hamsters at 2 and 6 days after plating Pg 88

CHAPTER 6

Figure 6.1 Comparison of protein profiles of SMG between normal and lactating females of mouse, rat and hamster Pg 95
Figure 6.2 Time-dependent effect of lactation and weaning on expression of MSP in SMG of hamsters Pg 96
Figure 6.3 The post-partum lactational induction of MSP in SMG of hamsters is repressed by estrogen and androgen treatment Pg 97
Figure 6.4 Post-partum induction of MSP in SMG is dependent on presence of pups Pg 97
Figure 6.5 Post-weaning decline of MSP in SMG of hamster dams can be delayed by prolonging their stay with pups Pg 98

Figure 6.6 Post-partum induction of MSP in SMG of hamster dam is dependent on number of suckling pups Pg 98

Figure 6.7 Oxytocin treatment of dams deprived of pups on 10th day post-partum is unable to maintain high expression of MSP in SMG Pg 99

Figure 6.8 Lactation-induced expression of MSP in SMG could not be maintained post-weaning by melatonin treatment Pg 100

Figure 6.9 Histogram showing uterus weights of female hamsters in different hormonal states Pg 101

CHAPTER 7

Figure 7.1 Southern blot hybridization on hamster genomic DNA digested with restriction endonucleases Pg 105

Figure 7.2 Schematic representation showing GPC-1 lambda clone and the MSP gene and upstream region Pg 106

Figure 7.3 cDNA and deduced aminoacid sequences of FLP, MSP and aphrodisin Pg 109

Figure 7.4 Schematic representation of genomic organization of MSP & FLP genes Pg 109

Figure 7.5 Primer extension analysis of MSP Pg 110

Figure 7.6 Schematic representation of genomic organization of MSP/FLP and related lipocalins Pg 112

Figure 7.7 Dot-blot of genomic DNA of rat, mouse, turtle, human & different species of hamster showing hybridization with FLP cDNA Pg 114

Figure 7.8 Comparison of protein profiles of SMG and LG of different hamster species and western blots to detect any proteins immunorelated to MSP/FLP Pg 116

Figure 7.9 Alignment of 5'-upstream sequences and exon-1 of MSP and FLP Pg 117

Figure 7.10 Schematic representation of different reporter constructs prepared for promoter analysis Pg 118

CHAPTER 8

Figure 8.1 Northern blot showing hybridization of FLP cDNA and Western blots showing crossreaction of FLP antiserum with rat OBP, the closest orthologue of FLP/MSP, expressed in rat lateral nasal glands (LNG) Pg 125

Figure 8.2 Two different views of the 3-dimensional model of MSP and FLP compared
with aphrodisin Pg 126

Figure 8.3 Amino acid sequence alignment of hamster FLP, MSP and aphrodisin Pg 127
Figure 8.4 Amino acids side chains forming the ligand-binding pocket Pg 128
Figure 8.5 Ligand binding studies Pg 129
Figure 8.6 Presence of FLP/MSP lipocalins in body secretions & fur of hamster Pg 131
Figure 8.7 Comparison of urinary protein profiles of rat, mouse and hamster showing excretion of major urinary lipocalins Pg 132
Figure 8.8 Possible role of the three lipocalins, MSP, FLP and Aphrodisin in chemical communication in hamster Pg 138
Figure 8.9 Possible role of MSP and FLP (putative odorant-/pheromone-binding lipocalins) in nursing hamster dams Pg 139

CHAPTER 9

Figure 9.1 Maximum likelihood phylogenetic tree of lipocalin family positioning MSP and FLP in the lipocalin clade X Pg 143
Figure 9.2 Schematic representation showing the possible duplication and speciation events that may have given rise to MSP, FLP, Aphrodisin, Probasin and their rat and mouse homologues from a common ancestral gene Pg 144
Figure 9.3 Cartoons showing some of the possible mechanisms by which sex hormones can have receptor-mediated repressive effects on expression of MSP and FLP genes Pg 147