CHAPTER 3
Design and Routing of Fault-tolerant Networks

In this chapter three newly designed fault-tolerant irregular Multistage Interconnection Networks have been presented, namely, Irregular Augmented Shuffle Exchange Network (IASEN), Improved Four Tree Network (IFTN) and Irregular Augmented Baseline Network (IABN). Also, the network structure, routing capability, fault-tolerance and cost of these MINs have been analyzed and explained in detail. Besides, these parameters have been explained for existing MINs of Augmented Shuffle Exchange Network (ASEN-2), Four Tree (FT) Network and Augmented Baseline Network (ABN) for comparison and better understanding.

3.1 Introduction

Designing a MIN that is cost-effective, fault-tolerant and exhibits multi-path routing capability has always been a challenging task for the network designers. With this view, in this research three new irregular MINs have been designed and analyzed. The focus of the designing has been irregular networks as

- There has been a lesser emphasis on the irregular MINs in the existing research literature. These possess an unequal and mostly lesser number of switches and thereby provide cost advantage compared to their regular counterparts.
- These are inherently multi-path and provide good fault-tolerance in most of the cases.
Before, explaining the design of these MINs it is important to understand the design principles explained in the next section.

3.2 Basic Principles of Network Design

Design principles proposed by Bermond et al. (1989) are as under:

- **Small and fixed degree:** The degree of a network topology can be defined as the maximum number of connections to a component. A larger degree will compromise the overall scalability of the system, it also means more wiring. Thus a small or fixed maximum degree is desirable.

- **Small transmission delay:** The diameter of a network topology can be defined as the maximum distance between any two components. A small diameter is desirable since it is proportional to sending a message from one component to another.

- **Maximum fault tolerance:** The network should function properly regardless of an edge or vertex failure. The maximum connectivity is desirable because it is the maximum fault tolerance of the network.

- **Easy routing algorithm:** Routing is considered to be an important function in communication networks. It is responsible for specifying a fixed route between two components for communication.

- **Embeddability of other topologies:** This is a crucial issue that deals with the ability of architecture to take advantage of an algorithm developed for a different type of architecture.

- **Large bisection width:** The bisection width is defined as the minimum number of edges, whose removal will result in two connected components of
approximately the same size. A large bisection width is desirable, because it will result in more data traveling in parallel between the two connected components. In other words, a larger bisection width will mean faster communication and higher fault tolerance.

g) **Extendibility**: It should be possible to concatenate two or more networks into a single network. When extending a network, some desirable properties should be remained while other useful parameters should be calculated easily.

3.3 Design and Routing of Existing MINs

The proposed MINs have been designed on the basis of the construction topology and performance parameters of some of the existing MINs of Augmented Shuffle Exchange Network (ASEN-2), Four Tree (FT) network and Augmented Baseline Network (ABN) (shown in Figures 2.11, 2.19 and 2.18 respectively in chapter 2). The routing scheme of these MINs has been explained in Annexure-A.

3.4 Design and Routing of Proposed MINs

This section explains the construction, routing scheme and fault-tolerance of proposed MINs of IASEN, IFTN and IABN in detail.

3.4.1 IASEN (Irregular Augmented Shuffle Exchange Network)

IASEN has been designed using ASEN-2 network by removing four switches in the stage 1. Removal of switches in any of the stages in an MIN implies less cost, reduction in the probability of failures and thereby enhancement in the reliability. However, in IASEN demultiplexers of size 1x4 have been used instead of 1x2, used in ASEN-2. Besides, there are some changes in existing conjugate loops and inter-
connections amongst the switches in different stages. The IASEN of 16x16 has been shown in Figure 3.1.

3.4.1.1 Construction of IASEN

An IASEN of size N x N (i.e. N sources and N destinations) has been designed using two identical groups of G₀ and G¹, each having N/2 sources and an equal number of destinations. This MIN has total n-1 stages (where n=log₂N). All the stages except the last stage, i.e., stages 0 to n-2 have 3x3 switches in them. Only the last stage consists of 2x2 switches. A sub-network is formed via a group of size N/2 switches and their associated multiplexers and demultiplexers. The IASEN of size 16x16 consists of two identical sub-networks, G₀ and G¹.

Let any arbitrary source and destination be depicted by S and D respectively in the binary form as under.

S=s₀, s₁,...,s_{n-2},s_{n-1} , where, s₀ is MSB and s_{n-1} is LSB.

D=d₀, d₁,...,d_{n-2},d_{n-1} , where, d₀ is MSB and d_{n-1} is LSB

A source is connected to switches of the stage 0 as follows:

(i) 1ˢᵗ request goes to primary switch.

(ii) 2ⁿᵈ request goes to s₀, s₁,...,s'_{n-2},s_{n-1}

(iii) 3ʳᵈ request goes to s₀', s₁,...,s_{n-2},s_{n-1}

(iv) 4ᵗʰ request goes to s₀', s₁,...,(s_{n-2} = s₀'), s_{n-1}
In order to understand all the paths and routing through the MIN, a redundancy graph is convenient and important. They are also useful in determining properties of a multi-path MIN, such as the number of faults tolerated and selecting the type of rerouting possibilities (Kumar & Reddy, 1997). Besides, they are also useful in determining all the available paths between a source and destination pair in a MIN. Therefore, the redundancy graph of IASEN has been given below.

3.4.1.2 Redundancy Graph of IASEN

In Figure 3.1 the switches A and B in stage 0 of sub-network G^0 are used as the primary and the secondary switches, thus lead to primary and secondary path respectively. Whereas switches E and F of sub-network G^1 are used as alternate
primary# and the secondary# switch, allowing alternate primary and secondary paths respectively. These paths have been shown through a redundancy graph in Figure 3.2.

![Redundancy Graph of IASEN](image)

Figure 3.2: Redundancy Graph of IASEN

3.4.1.3 Routing Scheme for IASEN

In a multistage interconnection network a routing tag is used to describe the path to be followed by a request to route itself from a given source to a known destination. Let the selected source \(S \) and destination \(D \) be represented in binary codes as:

\[
S = s_0, s_1, \ldots, s_{n-2}, s_{n-1}
\]

\[
D = d_0, d_1, \ldots, d_{n-2}, d_{n-1}
\]

Following procedure is used to route a request from a given source say \(S \) to the desired destination say \(D \).

1) The source \(S \) selects one of the sub-networks \(G^0 \) or \(G^1 \) based on the most significant bit of the destination \(D \) (i.e. \(d_0 \)). In one sub-network there exist
two types of paths viz. primary and secondary between any of the selected source-destination pairs. Primary path is one, which is the shortest from a given source to the desired destination. An alternate path (involving more switches and stages) is known as secondary path. Each source attempts entry into its primary sub-network via its primary path. If the primary path is not available or faulty (i.e. either MUX or primary switch or both are faulty), then the request is routed to secondary path. If the secondary path is also faulty, then the request is routed through the alternate path in the other subnetwork.

2) The routing tag determines the link to be used to move request from one stage to another.

If the request uses primary switch in G^0 or G^1 then

$$\text{Routing tag} = 0.d_{n-1}.d_0.d_1$$

If the request uses primary switch in G^1 then

$$\text{Routing tag} = 1.d_{n-1}.d_0.d_1$$

If the request uses secondary switch in G^0 or G^1 then

the request is routed through the minimum path-length to the destination (illustrated in Figure 3,3)

3) The demultiplexers are attached to the output lines as follows.

For each DEMUX(i) where $0 \leq i \leq 3$

1st request uses output line i

2nd request uses output line $|i+4$

3rd request uses output line $i+8$

4th request uses output line $i+12$

For each DEMUX(i) where $4 \leq i \leq 7$
1st request uses output line | 4-i |
2nd request uses output line i
3rd request uses output line i+4
4th request uses output line i+8

For each DEMUX(i) where 8 ≤ i ≤ 11
1st request uses output line | 8-i |
2nd request uses output line | 4-i |
3rd request uses output line i
4th request uses output line i+4

For each DEMUX(i) where 12 ≤ i ≤ 15
1st request uses output line | 12-i |
2nd request uses output line | 8-i |
3rd request uses output line | 4-i |
4th request uses output line i

Following paths are possible between (0,4) source-destination pair as shown in Figure 3.3.

Primary paths
\[0 \rightarrow \text{MUX} (0) \rightarrow A \rightarrow A' \rightarrow \text{DEMUX} (0) \rightarrow 4 \]
\[0 \rightarrow \text{MUX} (0) \rightarrow A \rightarrow C \rightarrow C' \rightarrow \text{DEMUX} (4) \rightarrow 4 \]

Secondary paths
\[0 \rightarrow \text{MUX} (2) \rightarrow B \rightarrow K \rightarrow G' \rightarrow \text{DEMUX} (12) \rightarrow 4 \]
\[0 \rightarrow \text{MUX} (2) \rightarrow B \rightarrow D \rightarrow L \rightarrow E' \rightarrow \text{DEMUX} (8) \rightarrow 4 \]

Primary# paths
\[0 \rightarrow \text{MUX}(8) \rightarrow E \rightarrow E' \rightarrow \text{DEMUX}(8) \rightarrow 4 \]
\[0 \rightarrow \text{MUX} (8) \rightarrow E \rightarrow G \rightarrow G' \rightarrow \text{DEMUX} (12) \rightarrow 4 \]
Secondary paths

0 → MUX (10) → F → I → C' → DEMUX (4) → 4
0 → MUX (10) → F → H → J → A' → DEMUX (0) → 4

Figure 3.3 : Possible Paths between 0000 and 0100 in IASEN

In Figure 3.3 there are a total of eight paths between a given source and destination pair when the request enters through primary or secondary switch. However, ASEN-2 exhibits 4 such paths between a given source-destination pair. It is clear that the proposed network of IASEN can entertain double number of requests in comparison to ASEN-2. Fault-tolerance is the capability of the MIN to continue serving request (with deteriorated performance) even if some of the switch(es) or link(s) do fail. Hence, IASEN is more fault-tolerant than ASEN-2. In the next section the newly proposed Improved Four Tree MIN has been explained.
3.4.2 IFTN (Improved Four Tree Network)

IFTN network has its origin from Four Tree (FT) network. In comparison it has one stage and two switches lesser than FT. The IFTN network has been shown in Figure 3.4. It contains the same number of multiplexers and demultiplexers as that of FT. An IFTN is an irregular network that supports multiple paths of different path lengths. In this MIN maximum path length is four, which is one less than FT. It has comparatively lesser number of switches and supports routing with shorter path length with lesser cost. Hence, it is superior to FT.

![Figure 3.4: Improved Four Tree Network (IFTN) of 16x16](image)

3.4.2.1 Construction of IFTN

IFTN consists of total \(2^{n+2} - 8\) switches with \(2^{n-1}\) of size 2x2 each and are remaining with 3x3. This network is constructed using two identical groups \(G^0\) and \(G^1\), which are
arranged one above the other. The two groups are formed based on the most significant bit (MSB) of the source destination terminals. Every 3x3 SE (Switching Element) in a stage forms a loop with the corresponding numbered SE of size 3x3 other sub-network in the same stage. The source and destination strings in this case are:

\[S = s_{n-1} \ldots s_1.s_0 \]

\[D = d_{n-1} \ldots d_1.d_0 \]

The sources and destinations are connected to the multiplexers and demultiplexers as follows:

a) If \((s_{n-2} \ldots s_1.s_0)\) bits are the same for the two sources, then these two sources are linked through the same pair of multiplexers.

b) If \((d_{n-2} \ldots d_1.d_0)\) bits are the same for the two destinations, then these two destinations are linked through the same pair of demultiplexers.

3.4.2.2 Redundancy Graph of IFTN

A redundancy graph for IFTN showing all the available paths between a source destination pairs has been shown in Figure 3.5. This graph is useful in determining fault tolerance and rerouting possibilities. It shows paths between two arbitrarily selected nodes the source, S and the destination, D.

![Redundancy Graph of IFTN](image)

Figure 3.5: Redundancy Graph of IFTN
3.4.2.3 Routing Scheme of IFTN

To route a request through a network there are two possibilities of favourable and alternative (lesser favourable) paths. Firstly, a path length algorithm is used to determine whether a request can be routed through the most favourable path or not. If most favourable path is not available or is busy then there is need of alternative path.

3.4.2.3.1 Path Length Algorithm

The possible path lengths between a particular source-destination pair varies from 2 to $2^m - 1$ for a $2^n \times 2^n$ network, depending upon the addresses of the source and destination terminals. For a given source-destination pair, there exist multiple paths of different lengths in an IFTN network.

The path length algorithm is:

Begin

if
\[
[(s_{n-2} \oplus d_{n-2}) + (s_{n-3} \oplus d_{n-3}) + \ldots \ldots + (s_1 \oplus d_1)] = 0
\]

(\(\oplus\) Represents an exclusive-OR and + represents a logical OR operator)

then

Minimum path length is 2 and all paths of different lengths are possible i.e. paths of length 2, 4, 6...(2m-2), (2m-1).

else

If
\[
[(s_{n-2} \oplus d_{n-2}) + (s_{n-3} \oplus d_{n-3}) + \ldots \ldots + (s_2 \oplus d_2)] \text{ Is zero}
\]

then

All paths of length equal to or greater than 4 are possible

else
if

\[(s_{n-2} \oplus d_{n-2}) + (s_{n-3} \oplus d_{n-3}) + \ldots + (s_{j} \oplus d_{j}) \] is zero \{where 1 \leq j \leq (n-2)\}

then

All paths of length equal to or greater than 2j are possible.

else

Path of length 2m-1 (i.e. longest path) is possible only.

End

Secondly, after determining the path length the routing tag algorithm explains the path to be followed in terms of routing tags. The routing tag algorithm is described in the next section.

3.4.2.3.2 Routing Tag Algorithm

The following routing algorithm for IFTN network is used to generate control tag which is required to establish a path between any source-destination terminal pair for a given path length (if it exists).

Begin

if

\[2 \leq x \leq (2m-1) \] (where \(m = \log_2 N/2 \), \(N = 2^n \) and \(x \) = path-length)

then

Routing tag= 0.d_1.d_{n-1}

else

if

\[x = (2m-1) \]

then

Routing tag= 1.d_2.d_1.d_0.d_{n-1}
else
 No tag is possible.
End

3.4.2.3.3 Routing Procedure

This algorithm assumes that sources and switches have the ability to detect faults in the switches to which they are connected. For any source-destination pair, find the minimum possible path length and then the corresponding routing tag. The request is routed as follows:

Initially, the request is submitted for routing via primary path. If the request is routed through the same group to which the source belongs (i.e. MSB of the source = group number), then the path is primary otherwise, it is secondary. If the primary path is faulty (i.e. multiplexer or the switch or both are faulty) then the request is routed through the secondary path. If the secondary path is also not available or faulty then the request is dropped. The most significant bit (MSB) of the routing tag, S_{n-1} will route the request through the multiplexer. For each switch in stage i ($i < 2m - 1$) (where $m = \log_2 N/2$, $N = 2^n$) request may arrive at any of the three input links. For each request, appropriate routing tag bits are used to connect to the output link. If the required output link is busy or cannot be used because of the existence of a fault in the next stage, the request is routed via the third output link known as auxiliary link to the conjugate switch in the loop. If the auxiliary link is also unusable, because of being busy or faulty, then the request is dropped. A fault in the demultiplexer at the output of a switch in a stage ($2m - 1$) is considered a fault in that switch. From the demultiplexer, the request is routed to the upper or the lower destinations according to the least significant bit of the tag (i.e. d_{n-1}).
The routing in the IFTN has been illustrated via an example below. Consider the IFTN with the source as 0000 and the destination as 0100. According to the routing algorithm the routing tag is 1.1.0.0.0. The possible paths between the selected source and destination are shown below (the same has been illustrated in Figure 3.6).

Primary Path:
0 → MUX(0) → A → I → J' → C' → DEMUX(4) → 4
0 → MUX(2) → B → I → J' → C' → DEMUX(4) → 4

Secondary Path:
0 → MUX(8) → E → K → L' → G' → DEMUX(12) → 4
0 → MUX(10) → F → K → L' → G' → DEMUX(12) → 4

Alternate Path:
0 → MUX(0) → A → C → J → J' → C' → DEMUX(4) → 4
From Figure 3.6 it is evident that there exist eight paths between a given source and destination pair. However, in FT there exist two paths. Therefore the proposed network IFTN can entertain more number of requests even under faults in comparison to FT. Thus IFTN is more fault-tolerant than FT.

3.4.3 IABN (Irregular Augmented Baseline Network)

IABN is a modification of Augmented Baseline Network (ABN) with one more stage, additional auxiliary links and increased size of demultiplexers. The IABN is a dynamically re-routable irregular MIN, providing multiple paths of varying lengths between any two randomly selected source-destination pairs.

3.4.3.1 Construction of IABN

An IABN of size $N \times N$ (i.e. N sources and N destinations) has been designed using two identical groups (G^0 and G^1), each having $N/2$ sources and an equal number of destinations. All the stages excepting the last stage i.e stage 1 to $n-1$ (where $n=\log_2 N$) have 3x3 switches. Only the last stage consists of size 2x2 switches. An IABN of size 16x16 is shown in Figure 3.7. Each source is linked to both the groups via multiplexers. There is one 4 x 1 MUX for each input link of a switch in stage 1 and one 1x4 DEMUX for each output link of a switch in stage $n-1$.

0 \rightarrow MUX(2) \rightarrow B \rightarrow D \rightarrow J \rightarrow J' \rightarrow C' \rightarrow DEMUX(4) \rightarrow 4

0 \rightarrow MUX(8) \rightarrow E \rightarrow G \rightarrow L \rightarrow L' \rightarrow G' \rightarrow DEMUX(12) \rightarrow 4

0 \rightarrow MUX(10) \rightarrow F \rightarrow H \rightarrow L \rightarrow L' \rightarrow G' \rightarrow DEMUX(12) \rightarrow 4
Let the source S and destination D be represented in binary code as:

\[S = s_0, s_1, \ldots, s_{n-2}, s_{n-1} \]
\[D = d_0, d_1, \ldots, d_{n-2}, d_{n-1} \]

The sources are connected to the switches of stage 1 as follows:

(i) Source S is connected to the \((s_1, \ldots, s_{n-2})\) primary switch in both the sub-networks through the multiplexers.

(ii) Source S is also connected to the \([(s_1, \ldots, s_{n-2})+1] \mod N/4\) secondary switch in both the sub-networks through the multiplexers.

Figure 3.7: Irregular Augmented Baseline Network (IABN) of 16x16
3.4.3.2 Redundancy Graph of IABN

The redundancy graph of IABN has been shown in Figure 3.8. It consists of two arbitrarily selected nodes source, S and the destination, D and rest of the nodes correspond to switches that lie along the path(s) between S and D. The switches A and B in stage 1 of sub-network G^0 are used as the primary and the alternative switches, leading to the primary and the secondary paths respectively. Whereas switches A# and B# of sub-network G^1 are used as primary# and the secondary# switch, thus lead to primary# path and the secondary# path respectively. Each of the conjugate loops in a stage is connected to both of the conjugate loops in the next stage. This guarantees that if faults affect switches in at most one loop in every pair of conjugate loops, and one switch in every pair of conjugate switches, then source can still remains connected to the selected destination. The same can easily be depicted from the redundancy graph shown below:

![Redundancy Graph of IABN](image)

Figure 3.8 : Redundancy graph of IABN
3.4.3.3 Routing Scheme of IABN

This section presents the routing scheme of IABN. Following procedure is used to route a request from given source S to the required destination D.

1) **For each source:** The source S selects one of the sub-network G^i based on the most significant bit of the destination D ($i=d_0$). In one sub-network there exist two paths primary and secondary between each source-destination pair. Each source attempts entry into its primary sub-network via its primary path. If the primary path is faulty (i.e. either MUX or primary switch or both are faulty), then the request is routed to secondary path. If the secondary path is also faulty then the request is routed to the other sub-network via auxiliary links of stage 2. If still request cannot get matured, then the request is rerouted to the secondary sub-network, in which same routing is followed.

2) **For each switch in stage n-3:** the routing of the request through stage n-3 of the sub-network depends on one tag bit, which is evaluated from d_1d_2 bits of destination address as follows:

 If $d_1d_2 = 00$

 then both conjugate pairs in the sub-network will have tag bit = 0

 If $d_1d_2 = 01$

 then first conjugate pair (A/A#, B/B#) will have tag bit = 1, and

 Second conjugate pair (C/C#, D/D#) will have tag bit = 0.

 If $d_1d_2 = 10$

 then both conjugate pairs in the sub-network will have tag bit = 1.

 If $d_1d_2 = 11$

 then first conjugate pair (A/A#, B/B#) will have tag bit = 0, and

 Second conjugate pair (C/C#, D/D#) will have tag bit = 1.
Use tag bit and route the request through the output link, if it is busy or if the successor switch (in the next stage) is faulty, route the request via the auxiliary output links to the other switch in the loop with the same tag bit.

If the auxiliary link is also unusable (busy or faulty), then try secondary path. If secondary path also have some fault, then try using auxiliary links.

If the request can not be handled by the primary sub-network then apply the same procedure for secondary sub-network. If all the possible paths in secondary sub-network also fail, then drop the request.

3) **For each switch in stage n - 2:** To route a request through at a switch in stage n-2, value of tag bit is evaluated as follows:

 If \(d_1d_2 = 00 \)

 then both conjugate pair \((E/E#)\) and \((F/F#)\) will have tag bit = 0

 If \(d_1d_2 = 01 \)

 then first conjugate pair \((E/E#)\) will have tag bit = 1, and

 second conjugate pair \((F/F#)\) will have tag bit = 0

 If \(d_1d_2 = 10 \)

 then both conjugate pair switches will have tag bit = 1

 If \(d_1d_2 = 11 \)

 then first conjugate pair \((E/E#)\) will have tag bit = 0, and

 second conjugate pair \((F/F#)\) of stage 2 will have tag bit = 1

Use tag bit and route the request through the usual output link, if it is busy or if the successor switch (in the next stage) is faulty, route the request via the auxiliary output links to the other switch in the loop with the same tag bit. If the auxiliary link is also unusable because it is busy or because of a fault, then
try secondary path. If secondary path also have some fault, then try using auxiliary links. If all the possible paths in primary sub network fail, then use the same tag bit and above procedure in secondary sub-network. If all the possible paths (including auxiliary links) in secondary sub-network also fail, then drop the request.

4) **For each switch in stage n - 1:** For a request at a switch in stage n-1, use bit d_{n-1} of the routing tag and route the request accordingly to one of the output links. If the required output link is busy, then backtrack to stage n-2 or n-3 according to availability of path and follow the above procedure for routing.

5) **For each demultiplexer at the output of stage n - 1:** For routing a request through a DEMUX, following steps are followed.

 If destination and DEMUX are in same sub-network,

 then 1$^\text{st}$ DEMUX uses output line 00 and

 2$^\text{nd}$ DEMUX uses output line 10.

 If destination and DEMUX are in different sub-networks,

 then 1$^\text{st}$ DEMUX uses output line 01 and

 2$^\text{nd}$ DEMUX uses output line 11.

 A faulty DEMUX at the output of the IABN is regarded as a failure of its associated switch in the stage n-1. This strategy enables a switch to detect a failure of its successor switch and re-route the request whenever possible.

As an example the various paths between the source $S=0000$ and the destination $D=0100$ in IABN have been highlighted in Figures 3.9 and 3.10.
The possible paths between (0,4) source-destination pairs when the request enters through the primary sub-network have been depicted below.

Primary paths

\[0 \rightarrow \text{MUX}(0) \rightarrow A \rightarrow E \rightarrow C1 \rightarrow \text{DEMUX}(4) \rightarrow 4 \]
\[0 \rightarrow \text{MUX}(0) \rightarrow A \rightarrow C \rightarrow F \rightarrow D1 \rightarrow \text{DEMUX}(6) \rightarrow 4 \]

Primary paths using auxiliary links of stage 2

\[0 \rightarrow \text{MUX}(0) \rightarrow A \rightarrow E \rightarrow E\# \rightarrow C1\# \rightarrow \text{DEMUX}(12) \rightarrow 4 \]
\[0 \rightarrow \text{MUX}(0) \rightarrow A \rightarrow C \rightarrow F \rightarrow F\# \rightarrow D1\# \rightarrow \text{DEMUX}(14) \rightarrow 4 \]

Secondary paths

\[0 \rightarrow \text{MUX}(2) \rightarrow B \rightarrow C1 \rightarrow \text{DEMUX}(4) \rightarrow 4 \]
\[0 \rightarrow \text{MUX}(2) \rightarrow B \rightarrow D \rightarrow D1 \rightarrow \text{DEMUX}(6) \rightarrow 4 \]

Secondary paths using switches and auxiliary links of stage 2
Following paths are possible between (0,4) source-destination pair when the request enters through the secondary sub-network as shown in Figure 3.10.

Primary paths

0 → MUX(8) → A# → E# → C1# → DEMUX(12) → 4
0 → MUX(8) → A# → C# → F# → D1# → DEMUX(14) → 4

Primary paths using auxiliary links of stage 2

0 → MUX(8) → A# → E# → E → C1 → DEMUX(4) → 4
0 → MUX(8) → A# → C# → F# → F → D1 → DEMUX(6) → 4

Secondary paths

0 → MUX(10) → B# → C1# → DEMUX(12) → 4
0 → MUX(10) → B# → D# → D1# → DEMUX(14) → 4

Secondary paths using switches and auxiliary links of stage 2

0 → MUX(10) → B# → E# → C1# → DEMUX(12) → 4
0 → MUX(10) → B# → D# → F# → D1# → DEMUX(14) → 4
0 → MUX(10) → B# → E# → E → C1 → DEMUX(4) → 4
0 → MUX(10) → B# → D# → F# → D1 → DEMUX(6) → 4
From Figures 3.9 and 3.10 it can be seen that there exist ten paths between a given pair of source and destination, when the request enters either through G^0 or G^1 sub-networks. Therefore, there will be twenty paths in total between each source-destination pair (ten from G^0 and ten from G^1). However, in ABN there exist four paths through one sub-network and eight paths in total between a given source-destination pair. Therefore the proposed network IABN can entertain more number of requests even under faults in comparison to ABN. Hence, IABN is more fault-tolerant than ABN.

3.5 Cost Analysis of Proposed and Related Networks

In this section the existing and proposed MINs are compared on the basis of the interconnection cost. To estimate the cost of a network it has been assumed that the cost of a switch is proportional to the number of cross-points within a switch. For example a
4x4 switch has 16 units of hardware cost whereas, a 2x2 switch has 4 units. The cost functions for the proposed and existing MINs have been depicted in Table 3.1. The values of these cost functions for varying network sizes have been shown in Table 3.2. In order to clearly represent this comparison corresponding graphs have been shown in Figures 3.11, 3.12 and 3.13.

Table 3.1 : Cost Functions for MINs

<table>
<thead>
<tr>
<th>MIN</th>
<th>Cost Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEN-2</td>
<td>3N(1.5log₂N -1)</td>
</tr>
<tr>
<td>IASEN</td>
<td>3N(1.5 log₂N) –9N/4+2N</td>
</tr>
<tr>
<td>FT</td>
<td>(9.75 2ⁿ⁺¹-54)</td>
</tr>
<tr>
<td>IFTN</td>
<td>(9.75 2ⁿ⁺¹-9N)</td>
</tr>
<tr>
<td>ABN</td>
<td>N/2(9n-11)</td>
</tr>
<tr>
<td>IABN</td>
<td>N/2(3log₂N+13)+2N+9N/4</td>
</tr>
</tbody>
</table>

Table 3.2 : Cost of networks for different network sizes

<table>
<thead>
<tr>
<th>Network Size (LogN)</th>
<th>Log of Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASEN-2</td>
</tr>
<tr>
<td>4</td>
<td>2.380211</td>
</tr>
<tr>
<td>5</td>
<td>2.795185</td>
</tr>
<tr>
<td>6</td>
<td>3.186391</td>
</tr>
<tr>
<td>9</td>
<td>4.283301</td>
</tr>
<tr>
<td>10</td>
<td>4.633549</td>
</tr>
</tbody>
</table>
Figure 3.11: Cost Comparison of ASEN-2 and IASEN

Figure 3.12: Cost Comparison of FT and IFTN

Figure 3.13: Cost Comparison of ABN and IABN
Figure 3.14: Cost Comparison of Regular and Irregular Networks

Figure 3.11 shows that the cost of IASEN is marginally lesser than ASEN-2. From Figure 3.12 it is clear that IFTN is more cost effective than FT. Whereas Figure 3.12 depicts that the cost of IABN is slightly higher than ABN. Cost comparison of all the considered networks is shown in Figure 3.14. This shows that all the networks are having comparable cost. In the next section the design contribution of this research have been discussed.

3.6 Design Contribution

The contribution towards design of three MINs of IASEN, IFTN and IABN with the existing MINs of ASEN-2, FT and ABN has been summarized in the Table 3.3 shown below:
Table 3.3: Contribution Towards Design

<table>
<thead>
<tr>
<th>Networks</th>
<th>Topology</th>
<th>Number of paths</th>
<th>Fault-tolerance</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASEN-2 (Existing)</td>
<td>Regular</td>
<td>4</td>
<td>IASEN is more fault-tolerant than ASEN-2</td>
<td>Cost of IASEN is marginally lesser than ASEN-2</td>
</tr>
<tr>
<td>IASEN (Proposed)</td>
<td>Irregular</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FT (Existing)</td>
<td>Irregular</td>
<td>2</td>
<td>IFTN is more fault-tolerant than FT</td>
<td>Cost of IFTN is considerably lesser than FT</td>
</tr>
<tr>
<td>IFTN (Proposed)</td>
<td>Irregular</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABN (Existing)</td>
<td>Regular</td>
<td>8</td>
<td>IABN is more fault-tolerant than ABN</td>
<td>Cost of IABN is slightly more than ABN</td>
</tr>
<tr>
<td>IABN (Proposed)</td>
<td>Irregular</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.7 Chapter Summary

Three new irregular MINs namely, IASEN, IFTN and IABN have been designed and analyzed on the basis of number of paths, fault-tolerance, routing and cost of interconnection.

In case of the newly designed IASEN there are eight paths between any of the source-destination pairs in comparison to ASEN-2 supporting four paths. IASEN is more fault-tolerant than ASEN-2 and Cost of IASEN is marginally lesser than ASEN-2.
Also the proposed network IFTN facilitates six more paths than FT. IFTN is more fault-tolerant than FT and Cost of IFTN is considerably lesser than FT.

IABN’s topology two benefits. Firstly, the network is single switch fault-tolerant. Secondly, it provides on-line repair and maintainability, allowing removal of any stage in IABN without disrupting the entire operation of the network. The sub-networks in the formation of the IABN are identical, i.e., the mirror image of each other (G₀ and G¹), making the implementation of the network simpler. Besides, the significant advantage of the designed IABN is that it provides twenty distinct paths between any of the source-destination pairs, which is much more than the eight paths being provided by its regular counterpart of ABN.

In summary all the three proposed networks provide better fault-tolerance at comparable cost than the existing ones.

In the next chapter permutation passibility behavior of existing networks (ASEN-2, FT and ABN) and proposed networks (IASEN, IFTN and IABN) has been presented.

Research Papers from this Chapter

