UWB innovation got a noteworthy lift particularly in 2002 since the US Federal Communication Commission (FCC) allowed the approval of utilizing the unlicensed recurrence band beginning from 3.1 to 10.6 GHz for business correspondence applications [1]. Albeit existing third-age (3G) correspondence innovation can furnish us with numerous wide administrations, for example, quick web get to, video communication, upgraded video/music download and in addition advanced voice administrations, UWB - as another innovation is extremely encouraging for some reasons. The FCC dispensed a flat out bandwidth up to 7.5 GHz which is around 110% fragmentary data transmission of the middle recurrence.

This expansive transmission capacity range is accessible for high information rate correspondences and also radar and security applications to work in. The UWB innovation has another favorable position from the power utilization perspective. Because of spreading the vitality of the UWB motions over a huge recurrence band, the most extreme power accessible to the radio wire as a feature of UWB framework will be as little as arranged by 0.5mW as per the FCC unearthly veil. This power is thought to be a little esteem and it is in reality near the commotion floor contrasted with what is as of now utilized as a part of various radio correspondence frameworks [2].

1.1 Ultra Wideband Radio (UWB)

Ultra-Wideband (UWB) was endorsed by the Federal Communications Commission (FCC) in Mar. 2002 for unlicensed activity in the 3.1GHz-10.6 GHz band subject to changed Part 15 rules. As far as possible the radiated control ghastly thickness (p.s.d) from a UWB source estimated in a 1 MHz data transfer capacity at the yield of an isotropic transmit recieving wire at a reference separation to that appeared in Figure1.

Further, the transmitted flag should immediately possess it is possible that
I) A partial transmission capacity more than 20% of the inside recurrence
II) More than 500 MHz of outright bandwidth to be named a UWB flag.

![UWB Spectral Mask per FCC Part 15 Rules](image)

Figure 1.1: UWB Spectral Mask per FCC Part 15 Rules [1]

UWB Spectral Mask for every FCC (Modified) Part 15 Rules [1] UWB innovation is utilized as a part of territories of radar, detecting and military interchanges since the previous 20 years. A significant surge of research intrigue has happened since February 2002, when the FCC [1] (Federal Communications Commission) issued a decision that UWB could be utilized for information correspondences and for radar and wellbeing applications. UWB innovation has been quickly progressing as a promising high information rate remote correspondence innovation for different applications. In this section a short review of UWB innovation and investigates its essentials, including UWB definition, correlation with different correspondence gauges like IEEE 802.11b and 802.11a in UWB Spectrum, Band task , focal points, current direction state and UWB standard exercises.

1.2 Why Ultra Wide Band (UWB)?

- The UWB (Ultra Wide-Band) is a radio correspondence innovation that utilizations low vitality beats and it is proposed for short-extend cum-high-
data transmission interchanges by utilizing a tremendous lump of the radio range (in GHz Range).

- The data transfer capacity of UWB frameworks, as characterized by FCC, is over 25% of the inside recurrence, or the transmission capacity is more prominent than 500 MHz.
- UWB interchanges transmit in a way that doesn't meddle with other customary narrowband and consistent bearer wave frameworks working in a similar recurrence band.
- A February 14, 2002 Report and Order by the FCC (Federal Communication Commission) approved the unlicensed utilization of UWB in the scope of 3.1 to 10.6 GHz for business applications.
- The endorsed FCC control ghastly thickness discharge restrain for UWB producers working in the UWB band is -41.3dBm/MHz. This is called Part 15 constrain a similar cutoff that applies to accidental producers in the UWB band.
- For Wireless Personal Area Networks (WPANs) situations, UWB innovation is a fantastic answer for the ultra-fast information benefits up to 500 Mega bit for every second (Mbps).
- UWB RF innovation transmits Binary information (0/1) over a wide range of frequencies utilizing low vitality and amazingly brief term beats (in the request of Pico-seconds).
- In a Multi-client condition to limit impedance every gadget is given a special PN code (Pseudo-irregular Noise). And a recipient working with the coveted PN code can translate the transmission.
- Because the accessible power level for UWB frameworks is low for FCC legitimate activity, this empowers them to work near the clamor floor level and thus to have a commotion like flag range which makes them great at alleviating extreme multipath blurring situations, solid impedance and sticking.
- Some radar applications, for example, situating, geo-region, confinement and following articles require astounding time-space determination and
high precision which can be accomplished by utilizing UWB frameworks instead of ordinary NB frameworks.

1.3 UWB Spectrum

![Figure 1.2: Spectrum of UWB Systems Compared With various communication standards [2]](image)

Range of UWB Systems Compared With different correspondence gauges Figure 1.2 demonstrates the examination of different correspondence channel norms like GPS, PCS, Bluetooth 802.11b, cordless and microwave band with UWB framework which lies in the band of 3.1GHz to 10.6 GHz [2].

1.4 Problem Statement

lately, interest for UWB receiving wires on remote correspondence has expanded the enthusiasm of research chip away at smaller microstrip reception apparatus plan The normal states of the microstrip patch are rectangular, square, circular, triangular, and so on. The sum total of what these has been hypothetically contemplated and there are settled outline formulae for every one of them.

Reception apparatus configuration is an imaginative assignment for microwave and remote architects where new sorts of receiving wire are considered for the different remote applications. Thus, here another state of microstrip patch receiving wire is composed which will cover the whole Ultra Wide Band. One of the real issue for UWB frameworks are electromagnetic
interference (EMI) from existing frequency bands, in light of the fact that there are numerous different remote narrowband application that are allotted for various frequencies band in the UWB band.

Along these lines it is fundamental for the planner to outline the UWB receiving wire that can be mirror the impedance from the other existing groups. To conquer this impedance issue UWB receiving wires ought to have band scores hence they can dismiss the current recurrence groups inside the extensive band. So some outlines with various band scores for UWB applications are proposed.

The objective of research is to think about how the execution of the radio wire relies upon different parameters of microstrip patch recieving wire in ultra wide band. High Frequency Structure Simulator 13.0 (HFSS13.0) software will be utilized, which is one business 3-D full-wave electromagnetic simulation software tool for the outline and reproduction of the radio wire. The reception apparatus parameters are differed to examine the impact of variety of the receiving wire parameters on the radio wire radiation execution.

1.5 Advance Work in inquire about

Implementation of a UWB framework is confronting numerous difficulties and one of these difficulties is to build up a fitting radio wire. This is on the grounds that the radio wire is a critical piece of the UWB framework and it influences the general execution of the framework. Presently, there are numerous reception apparatus outlines that can accomplish expansive data transmission to be utilized as a part of UWB frameworks, for example, the Vivaldi radio wire, bi-funnel shaped recieving wire, log occasional reception apparatus and winding recieving wire as appeared in Figure 1.3.
A Vivaldi receiving wire [3-4] is one of the contenders for UWB task. It has a directional radiation design and thus it isn't reasonable for either indoor remote correspondence or versatile/convenient gadgets which require omni-directional radiation examples to empower simple and effective correspondence amongst transmitters and beneficiaries every which way.

Mono-cone shaped and bi-conelike receiving wires [5] have cumbersome structures with substantial physical measurements which constrain their applications. Likewise, log occasional [6] and winding receiving wires [7] are two distinctive UWB radio wires that can work in the 3.1-10.6 GHz recurrence band however are not prescribed for indoor remote correspondence applications or versatile/compact gadgets. This is on account of they have expansive physical measurements and in addition dispersive qualities with recurrence and serious ringing impact.

1.6 UWB Antennas with Band stop Function

However, there are a few existing NB correspondence frameworks working underneath 10.6 GHz in the same UWB recurrence band and may cause impedance with the UWB frameworks, for example, IEEE 802.11a WLAN framework or HIPERLAN/2 remote framework. These frameworks work at 5.15-5.825 GHz which may cause obstruction with a UWB framework. To maintain a strategic distance from the impedance with the current remote frameworks, a channel with band stop attributes perhaps coordinated with UWB receiving wires to accomplish an indent work at the meddling recurrence band Figure1.4 demonstrates a few created band stop reception antenna structures.
Figure 1. 4: Printed receiving wire outlines with single band stop capacities [8-12].

The examination centers around the improvement of various novel UWB microstrip-line-nourished printed plate monopole and cross breed receiving wires with an accentuation of their recurrence space execution as appeared in Figure 1.5 Different radio wire arrangements are proposed and outlined so as to locate a decent contender for UWB activity. The sensible reception apparatus hopeful ought to fulfil UWB execution necessities including little size, consistent gain, radiation design soundness and stage linearity through the recurrence band of intrigue. Additionally, the outlined UWB receiving wire ought to have simplicity of assembling and joining with other microwave parts.

We have recreated, outlined, manufactured and after that tried tentatively extraordinary printed circle monopole receiving wire models for UWB short-extend remote correspondence applications. The printed plate monopole reception apparatuses are picked in light of the fact that they have little a size and omnidirectional radiation designs with substantial bandwidth.

Figure 1. 5: Modified shape planar antennas for UWB applications (a) rectangular [13-14] (b) circular and elliptical [15-16] (c) other shapes [17].

Prior research has moved toward the branch of knowledge in various distinctive ways. The accompanying gives a rundown of the contemplations. Cutting diverse formed openings in the radiation fix or the ground plane is the most widely recognized approach, for example, U-molded [8], C-molded [9], L-
molded [10], pi-formed [11], and H-molded spaces [12]. Presenting parasitic strips close to the radiation fix or the ground plane has been endeavoured [13, 14]. Other strategies have been utilized to acquire the band indented properties. For instance, by installing a couple of T-molded stubs inside a circular space in the radiation fix, an indented band around 5.5 GHz is acquired [15], a correlative split-ring resonator is embedded close to the bolster line, to produce scored groups [16], or the band indented work is gotten utilizing a coupled C-formed parasitic structure [17]. Each score structure can accomplish just a single rejected band. Hence, to yield duplicate indented groups, different or different score structures are required.

1.7 Thesis Scopes

There are six major components to fulfill the objectives of the thesis, which are as follows:

1. The frequency operation of this antenna is from 2 GHz to 12 GHz, which includes UWB (3.1-10.6 GHz) frequency of wireless application.

2. To design an antenna with multi bands stop filters at L band (1-2 GHz), medium band of WIMAX (3.2-3.8GHz), IEEE 802.16, C-band downlink for satellite Communication channel (3.7-4.2GHz), X-band satellite communication channel (7.25-7.75GHz) frequency that can reduce the interference with UWB.

3. To design an antenna that covered the entire frequencies of lower band of wi-max (2.5-2.8 GHz), C-band uplink (5.925 -6.425 GHz), WLAN/IEEE802.11a (5.15-5.825) and X-band (7.9-8.4GHZ) with UWB.

4. Antennas are defined by various parameters according to their constitution shape and size. So that antenna characteristics such as Return loss (S_{11}), VSWR, Gain, Radiation Efficiency, Radiation pattern and 3 dB beam width and many more antenna parameters discussed in this thesis.

5. The antenna had been simulated by using High Frequency Structure Simulator (HFSS-13.0). This software is chosen because it is a modern tool for the 3D EM simulation of high frequency components.
vi. To the fabrication of UWB Microstrip patch antenna had been tested by using Vector Network Analyzer under the privilege Antenna testing and measurement society (ATMS).

1.8 Thesis Outline

Chapter 1: provides an overview of the introductory chapter that defines the importance of this research respectively, the state of the problem, project objectives and scope of the study. The previous research work on UWB with notch band characteristics and the current issues are also highlighted.

Chapter 2: introduces a review of literature related the UWB history and definition of UWB signal with some international standardization on it. The literature review examined the comprehensive background of other related research works

Chapter 3: fundamental of antenna parameters that should be considered in the designing of UWB antenna with band notch characteristics are to be mentioned in this chapter.

Chapter 4: The introduction of UWB technology, the challenges in UWB antenna design, band assignment in UWB and advantages of UWB technology has been discussed in this chapter.

Chapter 5: An introduction about microstrip patch antenna with their advantages disadvantages, different feeding techniques, various modes of operation are mentioned in this chapter.

Chapter 6: Designing and simulation results of proposed geometry and basic methodology of a modern tool of 3D EM simulation software i.e. High Frequency Structure Simulator (HFSS-13.0) has been discussed in this chapter.

Chapter 7: fabrication process and measured results of prototype using vector network analyzer and comparative analysis of Simulated and measured results are also mentioned in this chapter.

Chapter 8: concludes this research work and furnishes recommendations for any future work.